Charmed meson pair production in high-energy collisions within the QCD color dipole approach
Corresponding Author
Glauber Sampaio dos Santos
HEP Phenomenology Group, Institute of Physics – UFRGS, Porto Alegre, RS, Brazil
Correspondence
Glauber Sampaio dos Santos, HEP Phenomenology Group, Institute of Physics – UFRGS, Porto Alegre, RS, Brazil.
Email: [email protected]
Search for more papers by this authorGustavo Gil da Silveira
HEP Phenomenology Group, Institute of Physics – UFRGS, Porto Alegre, RS, Brazil
PH Department, European Organization for Nuclear Research, Geneva, Switzerland
Department of Nuclear Physics and High Energies, Institute of Physics – UERJ, Rio de Janeiro, Brazil
Search for more papers by this authorMagno Valério Trindade Machado
HEP Phenomenology Group, Institute of Physics – UFRGS, Porto Alegre, RS, Brazil
Search for more papers by this authorCorresponding Author
Glauber Sampaio dos Santos
HEP Phenomenology Group, Institute of Physics – UFRGS, Porto Alegre, RS, Brazil
Correspondence
Glauber Sampaio dos Santos, HEP Phenomenology Group, Institute of Physics – UFRGS, Porto Alegre, RS, Brazil.
Email: [email protected]
Search for more papers by this authorGustavo Gil da Silveira
HEP Phenomenology Group, Institute of Physics – UFRGS, Porto Alegre, RS, Brazil
PH Department, European Organization for Nuclear Research, Geneva, Switzerland
Department of Nuclear Physics and High Energies, Institute of Physics – UERJ, Rio de Janeiro, Brazil
Search for more papers by this authorMagno Valério Trindade Machado
HEP Phenomenology Group, Institute of Physics – UFRGS, Porto Alegre, RS, Brazil
Search for more papers by this authorAbstract
A study of double-charmed meson production in high-energy proton–proton collisions at the Large Hadron Collider is presented. Considering the color dipole formalism developed in the transverse momentum representation along with the double parton scattering mechanism, predictions are made for the transverse momentum differential cross section for different pairs of -mesons. The theoretical results cover the center-of-mass energy and forward rapidities available by the LHCb experiment. The proton–proton results considering different unintegrated gluon distributions are compared to the respective data collected at the LHC.
CONFLICT OF INTEREST STATEMENT
The authors declare no potential conflict of interests.
REFERENCES
- Aaboud, M., Aad, G., Abbott, B., Abdinov, O., Abeloos, B., & Abhayasinghe, D. K. 2019, Phys. Lett. B, 790, 595.
- Aaij, R., Abellán Beteta, C., Adeva, B., Adinolfi, M., Adrover, C., Pasta, A., & Ajaltouni, Z. 2012, J. High Energy Phys., 06, 141. ([Addendum: JHEP 03, 108 (2014)]).
- Aaij, R., Abellán Beteta, C., Adeva, B., Adinolfi, M., Pasta, A., & Ajaltouni, Z. 2016, J. High Energy Phys., 3, 159 ([Erratum: JHEP 09, 013 (2016), Erratum: JHEP 05, 074 (2017)]).
10.1007/JHEP03(2016)159 Google Scholar
- Aaij, R., Adeva, B., Adinolfi, M., Ajaltouni, Z., Akar, S., & Albrecht, J. 2017, J. High Energy Phys., 6, 147.
10.1007/JHEP06(2017)147 Google Scholar
- Abe, F., Akimoto, H., Akopian, A., Albrow, M. G., Amendolia, S. R., Amidei, D., & Antos, J. 1997, Phys. Rev. D, 56, 3811.
- Acharya, S., Adamová, D., Adhya, S. P., et al. 2019, Eur. Phys. J. C, 79(5), 388.
10.1140/epjc/s10052-019-6873-6 Google Scholar
- Acharya, S., Adamová, D., Adler, A., et al. 2021, J. High Energy Phys., 05, 220.
- Altinoluk, T., Boussarie, R., & Kotko, P. 2019, J. High Energy Phys., 05, 156.
10.1007/JHEP05(2019)156 Google Scholar
- Anderle, D. P., Kaufmann, T., Stratmann, M., Ringer, F., & Vitev, I. 2017, Phys. Rev. D, 96(3), 034028.
10.1103/PhysRevD.96.034028 Google Scholar
- Andronic, A., Arleo, F., Arnaldi, R., et al. 2016, Eur. Phys. J. C, 76(3), 107.
- Bartels, J., Golec-Biernat, K. J., & Kowalski, H. 2002, Phys. Rev. D, 66, 014001.
10.1103/PhysRevD.66.014001 Google Scholar
- Berezhnoy, A. V., Likhoded, A. K., Luchinsky, A. V., & Novoselov, A. A. 2012, Phys. Rev. D, 86, 034017.
10.1103/PhysRevD.86.034017 Google Scholar
- Beuf, G., Peschanski, R., Royon, C., & Salek, D. 2008, Phys. Rev. D, 78, 074004.
10.1103/PhysRevD.78.074004 Google Scholar
- Cacciari, M., Greco, M., & Nason, P. 1998, J. High Energy Phys., 5, 7.
10.1088/1126-6708/1998/05/007 Google Scholar
- Calucci, G., & Treleani, D. 1999, Phys. Rev. D, 60, 054023.
10.1103/PhysRevD.60.054023 Google Scholar
- Carvalho, F., Cazaroto, E. R., Gonçalves, V. P., & Navarra, F. S. 2016, Phys. Rev. D, 93(3), 034004.
10.1103/PhysRevD.93.034004 Google Scholar
- Cazaroto, E. R., Goncalves, V. P., & Navarra, F. S. 2013, Phys. Rev. D, 88(3), 034005.
10.1103/PhysRevD.88.034005 Google Scholar
- Cazaroto, E. R., Goncalves, V. P., & Navarra, F. S. 2018, Mod. Phys. Lett. A, 33(25), 1850141.
- d'Enterria, D., & Snigirev, A. 2018, Adv. Ser. Direct. High Energy Phys., 29, 159.
10.1142/9789813227767_0009 Google Scholar
- Frixione, S., Nason, P., & Webber, B. R. 2003, J. High Energy Phys., 8, 7.
10.1088/1126-6708/2003/08/007 Google Scholar
- Goldhaber, G., & Wiss, J. E. 1980, Annu. Rev. Nucl. Part. Sci., 30, 337.
- Golec-Biernat, K., & Sapeta, S. 2018, J. High Energy Phys., 3, 102.
10.1007/JHEP03(2018)102 Google Scholar
- Golec-Biernat, K. J., & Wusthoff, M. 1999, Phys. Rev. D, 60, 114023.
- Goncalves, V. P., Kopeliovich, B., Nemchik, J., Pasechnik, R., & Potashnikova, I. 2017, Phys. Rev. D, 96(1), 014010.
- Gribov, L. V., Levin, E. M., & Ryskin, M. G. 1983, Phys. Rep., 100, 1.
- van Hameren, A., Maciula, R., & Szczurek, A. 2014, Phys. Rev. D, 89(9), 094019.
10.1103/PhysRevD.89.094019 Google Scholar
- van Hameren, A., Maciuła, R., & Szczurek, A. 2015, Phys. Lett. B, 748, 167.
- Karpishkov, A. V., Saleev, V. A., & Shipilova, A. V. 2016, Phys. Rev. D, 94. 114012.
10.1103/PhysRevD.94.114012 Google Scholar
- Kneesch, T., Kniehl, B. A., Kramer, G., & Schienbein, I. 2008, Nucl. Phys. B, 799, 34.
- Levin, E. M., & Ryskin, M. G. 1990, Phys. Rep., 189, 267.
- Luszczak, M., Maciula, R., & Szczurek, A. 2012, Phys. Rev. D, 85, 094034.
10.1103/PhysRevD.85.094034 Google Scholar
- Maciula, R., & Szczurek, A. 2013, Phys. Rev. D, 87(7), 074039.
10.1103/PhysRevD.87.074039 Google Scholar
- Maciuła, R., Saleev, V. A., Shipilova, A. V., & Szczurek, A. 2016, Phys. Lett. B, 758, 458.
- Mangano, M. L., Nason, P., & Ridolfi, G. 1992, Nucl. Phys. B, 373, 295.
- Mekhfi, M. 1985, Phys. Rev. D, 32, 2371.
- Moriggi, L. S., Peccini, G. M., & Machado, M. V. T. 2020, Phys. Rev. D, 102(3), 034016.
- Motyka, L., Sadzikowski, M., & Stebel, T. 2017, Phys. Rev. D, 95(11), 114025.
10.1103/PhysRevD.95.114025 Google Scholar
- Nikolaev, N. N., Piller, G., & Zakharov, B. G. 1995, J. Exp. Theor. Phys., 81, 851.
- Praszalowicz, M., & Stebel, T. 2013, J. High Energy Phys., 04, 169.
10.1007/JHEP04(2013)169 Google Scholar
- Raufeisen, J., & Peng, J.-C. 2003, Phys. Rev. D, 67, 054008.
- Santos, G. S. d., da Silveira, G. G., & Machado, M. V. T. 2022, Eur. Phys. J. C, 82(9), 795.
- Santos, G. S. d., da Silveira, G. G., & Machado, M. V. T. 2023a, Phys. Lett. B, 838, 137667.
10.1016/j.physletb.2023.137667 Google Scholar
- Santos, G. S. d., da Silveira, G. G., & Machado, M. V. T. 2023b, Eur. Phys. J. C, 83(9), 862.
10.1140/epjc/s10052-023-12028-2 Google Scholar
- Sjostrand, T., & van Zijl, M. 1987, Phys. Rev. D, 36, 2019.
- Stasto, A. M., Golec-Biernat, K. J., & Kwiecinski, J. 2001, Phys. Rev. Lett., 86, 596.
- Treleani, D. 2007, Phys. Rev. D, 76, 076006.
10.1103/PhysRevD.76.076006 Google Scholar