Morphology and methanol permeability of sulfosuccinic acid cross-linked polyvinyl alcohol and polyvinyl alcohol/Nafion nanofibrous membranes
Mert Işılay
Graduate School of Natural and Applied Sciences, Department of Textile Engineering, Ege University, Bornova, İzmir, Turkey
Faculty of Engineering, Department of Textile Engineering, Dokuz Eylül University, Buca, İzmir, Turkey
Contribution: Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorCorresponding Author
Ahmet Çay
Faculty of Engineering, Department of Textile Engineering, Ege University, Bornova, İzmir, Turkey
Correspondence
Ahmet Çay, Department of Textile Engineering, Faculty of Engineering, Ege University, Bornova, İzmir, Turkey.
Email: [email protected]
Contribution: Funding acquisition (lead), Project administration (lead), Resources (lead), Supervision (lead), Validation (lead), Writing - review & editing (equal)
Search for more papers by this authorÇiğdem Akduman
Department of Textile Technology, Denizli Vocational School of Technical Sciences, Pamukkale University, Denizli, Turkey
Contribution: Conceptualization (equal), Formal analysis (equal), Methodology (lead), Writing - review & editing (equal)
Search for more papers by this authorEmriye Perrin Akçakoca Kumbasar
Faculty of Engineering, Department of Textile Engineering, Ege University, Bornova, İzmir, Turkey
Contribution: Conceptualization (supporting), Methodology (equal)
Search for more papers by this authorHasan Ertaş
Faculty of Science, Department of Chemistry, Ege University, Bornova, İzmir, Turkey
Contribution: Formal analysis (equal), Methodology (supporting)
Search for more papers by this authorMert Işılay
Graduate School of Natural and Applied Sciences, Department of Textile Engineering, Ege University, Bornova, İzmir, Turkey
Faculty of Engineering, Department of Textile Engineering, Dokuz Eylül University, Buca, İzmir, Turkey
Contribution: Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorCorresponding Author
Ahmet Çay
Faculty of Engineering, Department of Textile Engineering, Ege University, Bornova, İzmir, Turkey
Correspondence
Ahmet Çay, Department of Textile Engineering, Faculty of Engineering, Ege University, Bornova, İzmir, Turkey.
Email: [email protected]
Contribution: Funding acquisition (lead), Project administration (lead), Resources (lead), Supervision (lead), Validation (lead), Writing - review & editing (equal)
Search for more papers by this authorÇiğdem Akduman
Department of Textile Technology, Denizli Vocational School of Technical Sciences, Pamukkale University, Denizli, Turkey
Contribution: Conceptualization (equal), Formal analysis (equal), Methodology (lead), Writing - review & editing (equal)
Search for more papers by this authorEmriye Perrin Akçakoca Kumbasar
Faculty of Engineering, Department of Textile Engineering, Ege University, Bornova, İzmir, Turkey
Contribution: Conceptualization (supporting), Methodology (equal)
Search for more papers by this authorHasan Ertaş
Faculty of Science, Department of Chemistry, Ege University, Bornova, İzmir, Turkey
Contribution: Formal analysis (equal), Methodology (supporting)
Search for more papers by this authorAbstract
Cross-linking of polyvinyl alcohol (PVA) and polyvinyl alcohol/Nafion (PVA/Nafion) electrospun nanofibers with sulfosuccinic acid (SSA) was investigated to assess their characterization and the effects of cross-linking on the methanol permeability performance of the nanofibrous membranes. SSA was directly incorporated into the electrospinning polymer solution. The morphology, chemical functional groups, thermal stability, water stability and water swelling of the resulting nanofibers were examined. The effects of SSA concentration on ion exchange capacity (IEC) and methanol permeability of the nanofibrous membranes were discussed. Bead-free and smooth nanofibers were produced for all SSA concentrations with a mean nanofiber diameter of 240–270 nm. It was shown that 15% SSA concentration was suitable for preserving the morphology of PVA nanofibers against water, while the morphology of PVA/Nafion nanofibers was preserved even without cross-linking. The increase in SSA concentration led to increase in swelling in water. SSA cross-linking was also shown to increase the thermal stability of the produced nanofibers. IEC increased by the increase in SSA concentration, while increase in SSA concentration led to a decrease in methanol permeability.
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Research
DATA AVAILABILITY STATEMENT
All data generated or analyzed during this study are included in this published article.
Supporting Information
Filename | Description |
---|---|
app56346-sup-0001-supinfo.docxWord 2007 document , 27.8 KB | Appendix S1. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Y. Yan, X. Liu, J. Yan, C. Guan, J. Wang, Energy Environ. Mater. 2020, 4, 502.
10.1002/eem2.12146 Google Scholar
- 2C. A. Bessel, K. Laubernds, N. M. Rodriguez, R. T. K. Baker, J. Phys. Chem. B 2001, 105, 1115.
- 3I. Shabani, M. M. Hasani-Sadrabadi, V. Haddadi-Asl, M. Soleimani, J. Membr. Sci. 2011, 368, 233.
- 4K. Halicka, J. Cabaj, Int. J. Mol. Sci. 2021, 22, 6357.
- 5F. Russo, R. Castro-Muñoz, S. Santoro, F. Galiano, A. Figoli, J. Environ. Chem. Eng. 2022, 10, 108452.
- 6C. Akduman, V. Demirel, F. Tezcan, J. Appl. Polym. Sci. 2021, 138, 50820.
- 7S. Wu, W. Shi, K. Li, J. Cai, C. Xu, L. Gao, J. Lu, F. Ding, Int. J. Biol. Macromol. 2023, 239, 124264.
- 8S. Wu, K. Li, W. Shi, J. Cai, Carbohydr. Polym. 2022, 294, 119756.
- 9R. Rasouli, A. Barhoum, M. Bechelany, A. Dufresne, Macromol. Biosci. 2019, 19, 1800256.
- 10V. Leung, F. Ko, Polym. Adv. Technol. 2011, 22, 350.
- 11F. Huang, Q. Wei, Y. Cai, in Functional Nanofibers and Their Applications (Ed: Q. Wei), Woodhead Publishing, Cambridge 2012.
10.1533/9780857095640.1.92 Google Scholar
- 12N. Hamdan, A. Yamin, S. A. Hamid, W. K. W. A. Khodir, V. Guarino, J. Funct. Biomater. 2021, 12, 59.
- 13H. Chen, M. Huang, Y. Liu, L. Meng, M. Ma, Sci. Total Environ. 2020, 739, 139944.
- 14Y. N. Yusoff, N. Shaari, Int. J. Energy Res. 2021, 45, 18441.
- 15M. Tanaka, Polym. J. 2016, 48, 51.
- 16R. Xia, H. Zhou, Z. Zhang, R. Wu, W. P. Wu, Polym. Eng. Sci. 2018, 58, 2071.
- 17M. A. Kipnis, P. V. Samokhin, G. N. Bondarenko, E. A. Volnina, Y. V. Kostina, O. V. Yashina, V. G. Barabanov, V. V. Kornilov, Russ. J. Phys. Chem. A 2011, 85, 1322.
- 18L. Shen, Z. Sun, Y. Chu, J. Zou, M. A. Deshusses, Int. J. Hydrogen Energy 2015, 40, 13071.
- 19L. Wu, Z. Zhang, J. Ran, D. Zhou, C. Li, T. Xu, Phys. Chem. Chem. Phys. 2013, 15, 4870.
- 20Y. Yao, L. Ji, Z. Lin, Y. Li, M. Alcoutlabi, H. Hamouda, X. Zhang, ACS Appl. Mater. Inter. 2011, 3, 3732.
- 21H. Junoh, J. Jaafar, M. N. A. M. Norddin, A. F. Ismail, M. H. D. Othman, M. A. Rahman, N. Yusof, W. N. W. Salleh, H. Ilbeygi, J. Nanomater. 2015, 2015, 690965.
- 22B. Dong, L. Gwee, D. Salas-de la Cruz, K. I. Winey, Y. A. Elabd, Nano Lett. 2010, 10, 3785.
- 23C. Ding, Z. Qiao, Ionics 2022, 28, 1.
- 24N. W. DeLuca, Y. A. Elabd, J. Membr. Sci. 2006, 282, 217.
- 25H. L. Lin, S. H. Wang, C. K. Chiu, T. L. Yu, L. C. Chen, C. C. Huang, T. H. Cheng, J. M. Lin, J. Membr. Sci. 2010, 365, 114.
- 26H. L. Lin, S. H. Wang, J. Membr. Sci. 2014, 452, 253.
- 27S. Mollá, V. Compañ, J. Membr. Sci. 2011, 372, 191.
- 28S. Mollá, V. Compañ, E. Gimenez, A. Blazques, I. Urdanpilleta, Int. J. Hydrogen Energy 2011, 36, 9886.
- 29R. E. Zizhou, A. Çay, E. P. Akçakoca Kumbasar, C. Ö. Çolpan, J. Ind. Text. 2019, 50, 773.
10.1177/1528083719844611 Google Scholar
- 30C. E. Tsai, C. W. Lin, B. J. Hwang, J. Power Sources 2010, 195, 2166.
- 31C. E. Tsai, C. W. Lin, J. Rick, B. J. Hwang, J. Power Sources 2011, 196, 5470.
- 32C. González-Guisasola, A. Ribes-Greus, Polym. Test. 2018, 67, 55.
- 33N. Kakati, J. Maiti, G. Das, S. H. Lee, Y. S. Yoon, Int. J. Hydrogen Energy 2015, 40, 7114.
- 34J. W. Rhim, H. B. Park, C. S. Lee, J. H. Jun, D. S. Kim, Y. M. Lee, J. Membr. Sci. 2004, 238, 143.
- 35O. Gil-Castell, D. Galindo-Alfaro, S. Sánchez-Ballester, R. Teruel-Juanes, J. D. Badia, A. Ribes-Greus, Nanomaterials 2019, 9, 397.
- 36I. Hayati, A. I. Bailey, T. F. Tadros, J. Colloid Interface Sci. 1987, 117, 205.
- 37W. K. Son, J. H. Youk, T. S. Lee, W. H. Park, Mater. Lett. 2005, 59, 1571.
- 38S. Mollá, V. Compañ, J. Power Sources 2011, 196, 2699.
- 39J. B. Ballengee, P. N. Pintauro, J. Membr. Sci. 2013, 442, 187.
- 40A. Sriruangrungkamol, W. Chonkaew, Polym. Bull. 2021, 78, 3705.
- 41J. Y. Yoon, H. Zhang, Y. K. Kim, D. Harbottle, J. W. Lee, J. Environ. Chem. Eng. 2019, 7, 102.
10.1016/j.jece.2018.102824 Google Scholar
- 42R. Zhang, B. Liang, T. Qu, B. Cao, P. Li, Environ. Technol. 2019, 40, 312.
- 43D. S. Kim, M. D. Guiver, S. Y. Nam, T. I. Yun, M. Y. Seo, S. J. Kim, H. S. Hwang, J. W. Rhim, J. Membr. Sci. 2006, 281, 156.
- 44Z. Liang, W. Chen, J. Liu, S. Wang, Z. Zhou, W. Li, G. Sun, Q. Xin, J. Membr. Sci. 2004, 233, 39.
- 45B. Gupta, S. Anjum, S. Ikram, Polym. Bull. 2013, 70, 2709.
- 46C. S. K. Figueiredo, T. L. M. Alves, C. P. Borges, J. Appl. Polym. Sci. 2009, 111, 3074.
- 47F. C. Nascimento, L. C. V. Aguiar, L. A. T. Costa, M. T. Fernandes, R. J. Marassi, A. S. Gomes, J. A. Castro, Polym. Bull. 2021, 78, 917.
- 48A. K. Sahu, G. Selvarani, S. D. Bhat, S. Pitchumani, P. Sridhar, A. K. Shukla, N. Narayanan, A. Banerjee, N. Chandrakumar, J. Membr. Sci. 2008, 319, 298.
- 49S. Ryu, B. Lee, J. H. Kim, C. Pak, S. H. Moon, Int. J. Energy Res. 2021, 45, 19136.
- 50D. Liu, Y. Xie, J. Zhong, F. Yang, J. Pang, Z. Jiang, J. Membr. Sci. 2022, 650, 120413.
- 51C. S. Wu, F. Y. Lin, C. Y. Chen, P. P. Chu, J. Power Sources 2006, 160, 1204.
- 52A. Z. Al Munsur, B. H. Goo, Y. Kim, O. J. Kwon, S. Y. Paek, S. Y. Lee, H. J. Kim, T. H. Kim, ACS Appl. Mater. Interfaces 2021, 13, 28188.
- 53S. Zhong, X. Cui, Y. Gao, W. Liu, S. Dou, Int. J. Hydrogen Energy 2014, 39, 17857.
- 54W. F. Chen, P. L. Kuo, Macromolecules 2007, 40, 1987.
- 55S. Zhong, X. Cui, T. Fua, H. Na, J. Power Sources 2008, 180, 23.
- 56Q. Zhang, J. Zheng, A. Shevade, L. Zhang, S. H. Gehrke, G. S. Heffelfinger, S. Jiang, J. Chem. Phys. 2002, 117, 808.
- 57D. Bhanushali, S. Kloos, C. Kurth, D. Bhattacharyya, J. Membr. Sci. 2001, 189, 1.
- 58M. Yoo, M. Kim, Y. Hwang, J. Kim, Ionics 2014, 20, 875.
- 59M. Işılay, A. Çay, Ç. Akduman, E. P. Akçakoca Kumbasar, H. Ertaş, Polym. Eng. Sci. 2024. https://doi.org/10.1002/pen.26943
10.1002/pen.26943 Google Scholar
- 60S. Mondal, S. Soam, P. P. Kundu, J. Membr. Sci. 2015, 474, 140.