Synergistic effects of boron nitride sheets and reduced graphene oxide on reinforcing the thermal conduction, SERS performance and thermal property of polyimide composite films
Junyu Zhao
National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, P. R. China
Contribution: Conceptualization (lead), Data curation (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorChunbo Wang
Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
Contribution: Methodology (lead)
Search for more papers by this authorChengyang Wang
National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, P. R. China
Contribution: Investigation (lead)
Search for more papers by this authorKe Zhang
National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, P. R. China
Contribution: Conceptualization (supporting)
Search for more papers by this authorBing Cong
National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, P. R. China
Contribution: Methodology (supporting)
Search for more papers by this authorLan Yang
National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, P. R. China
Contribution: Validation (lead)
Search for more papers by this authorCorresponding Author
Xiaogang Zhao
National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, P. R. China
Correspondence
Xiaogang Zhao, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Email: [email protected]
Contribution: Writing - review & editing (lead)
Search for more papers by this authorChunhai Chen
National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorJunyu Zhao
National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, P. R. China
Contribution: Conceptualization (lead), Data curation (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorChunbo Wang
Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
Contribution: Methodology (lead)
Search for more papers by this authorChengyang Wang
National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, P. R. China
Contribution: Investigation (lead)
Search for more papers by this authorKe Zhang
National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, P. R. China
Contribution: Conceptualization (supporting)
Search for more papers by this authorBing Cong
National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, P. R. China
Contribution: Methodology (supporting)
Search for more papers by this authorLan Yang
National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, P. R. China
Contribution: Validation (lead)
Search for more papers by this authorCorresponding Author
Xiaogang Zhao
National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, P. R. China
Correspondence
Xiaogang Zhao, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Email: [email protected]
Contribution: Writing - review & editing (lead)
Search for more papers by this authorChunhai Chen
National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorAbstract
Polyimide (PI) composite films with hybrid fillers containing hBN (hexagonal boron nitride) sheets and rGO (reduced graphene oxide) were successfully fabricated by in-situ polymerization. Herein, hBN sheets and rGO were obtained by ball milling and chemical reduction, respectively. In PI composite films, hBN can be tightly attached onto the surface of rGO via π-π interaction, which can benefit the construction of heat-conduction pathways and reduce boundary of heat resistance. The results show that the addition of rGO and hBN could enhance the thermal conductivity by synergistic effects. Specially, hBN and rGO are at the weight ratio of 1:1 and at the total loading of 33 wt%, thermal conductivity of PI composites can reach up to 1.19 Wm−1 K−1, which is 5.61 times higher than that of pure PI. Thermal property and dynamic mechanical property of composite films were also investigated. Besides, compared with pure PI, mixed fillers have obvious surface-enhanced Raman scattering signals, indicating the synergistic effect of the mixed fillers. Overall, this study gives insights into heat dissipative and high sensitivity analysis components which may be used in the field of high-temperature micro fabrication.
CONFLICT OF INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
app53401-sup-0001-supinfo.docxWord 2007 document , 659.8 KB | Figure S1. The TEM image of reduced graphene oxide at low magnification. Figure S2. The FTIR spectra of polyimide and polyimide composites. Figure S3. TGA curve of hBN sheets. Table. S1. Statistical results of thermal conductivity based on BN composites reported in the literature. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1A. Bashir, M. Maqbool, R. Lv, A. Usman, H. Guo, W. Aftab, H. Niu, M. Liu, S.-L. Bai, Composites, Part B 2021, 218, 108871.
- 2R. Chen, Q. X. He, X. Li, F. Y. Wen, L. Cheng, L. Li, Y. S. He, X. Y. Liu, J. X. Mu, Chem. Eng. J. 2022, 431, 134049.
- 3Q. X. He, R. Chen, S. Li, Z. Y. Wang, F. Y. Wen, B. H. Wang, J. X. Mu, Composites, Part A 2021, 143, 106280.
- 4Y. Han, K. Ruan, J. Gu, Nano Res. 2022, 15, 4747.
- 5T. Gu, D.-X. Sun, X. Xie, X.-D. Qi, J.-H. Yang, Y.-Z. Lei, Y. Wang, Compos. Sci. Technol. 2022, 219, 109257.
- 6Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Nano-Micro Lett. 2022, 14, 26.
- 7X. Zhang, B. Zhang, M. Sun, J. Li, C. Liu, J. Mater. Sci.-Mater. Electron. 2022, 33, 1577.
- 8L. An, Z. Yang, X. Zeng, W. Hu, J. Zhang, Q. Wang, Y. Yu, Chem. Eng. J. 2022, 431, 133740.
- 9C. Huang, F. Zheng, S. Chen, Y. Zhang, IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 38.
- 10M. Sun, X. Wang, Z. Ye, X. Chen, Y. Xue, G. Yang, Nanomaterials 2022, 12, 367.
- 11K. Ruan, J. Gu, Macromolecules 2022, 55, 4134.
- 12K. Ruan, Y. Guo, J. Gu, Macromolecules 2021, 54, 4934.
- 13T. Wu, Y. Xu, H. Wang, Z. Sun, L. Zou, Carbon 2021, 171, 639.
- 14L. Ma, Y. Wang, X. Xu, Y. Wang, C. Wang, Ceram. Int. 2021, 47, 1076.
- 15D. Kong, M. Kang, K. Y. Kim, J. Jang, J. Cho, J. B. In, H. Lee, ACS Appl. Mater. Interfaces 2020, 12, 37784.
- 16X. Ou, S. Chen, X. Lu, Q. Lu, Compos. Commun. 2021, 23, 100549.
- 17Y. Guo, S. Wang, K. Ruan, H. Zhang, J. Gu, npj Flexible Electron. 2021, 5, 16.
- 18Y. Zhang, Z. Ma, K. Ruan, J. Gu, Nano Res. 2022, 15, 5601.
- 19H. Yu, P. Guo, M. Qin, G. Han, L. Chen, Y. Feng, W. Feng, Compos. Sci. Technol. 2022, 222, 109406.
- 20Z. Chu, W. Li, S. Song, W. Yuan, S. Zhu, W. Gan, Ceram. Int. 2022, 48, 13794.
- 21K. Yang, Y. Y. Kang, H. J. Ahn, D. G. Kim, N. K. Park, S. Q. Choi, J. C. Won, Y. H. Kim, J. Ind. Eng. Chem. 2020, 82, 173.
- 22G. Y. Duan, Y. T. Cao, J. Y. Quan, Z. M. Hu, Y. Wang, J. R. Yu, J. Zhu, J. Mater. Sci. 2020, 55, 8170.
- 23M. Haruki, T. Itaoka, Y. Takatsu, J. Appl. Polym. Sci. 2022, 139, e52615.
- 24G. Y. Kim, M.-C. Choi, D. Lee, C.-S. Ha, Macromol. Mater. Eng. 2012, 297, 303.
- 25Y. Li, M.-C. Choi, K.-M. Jeong, J. H. Jeong, H.-G. Lee, G.-H. Kim, C.-S. Ha, Macromol. Res. 2017, 25, 496.
- 26K. M. Jeong, Y. G. Cai, X. Q. Piao, C. S. Ha, J. Nanosci. Nanotechnol. 2020, 20, 4866.
- 27K. M. Jeong, Y. Li, D. G. Yoo, N. K. Lee, H. G. Lee, S. Ando, C. S. Ha, Polym. Int. 2018, 67, 588.
- 28D. G. Yoo, S. S. Park, C. W. Noh, I. Shin, K. H. Lim, J. Son, S. K. Ahn, C. S. Ha, Polym. Int. 2019, 68, 1441.
- 29H. Zhou, H. Deng, L. Zhang, Q. Fu, ACS Appl. Mater. Interfaces 2017, 9, 29071.
- 30Y. Wang, X. Zhang, X. Ding, Y. Li, P. Zhang, M. Shu, Q. Zhang, Y. Gong, K. Zheng, B. Wu, X. Tian, Compos. Sci. Technol. 2021, 205, 108693.
- 31X. Zhuang, Y. Zhou, F. Liu, Mater. Res. Express 2017, 4, 015018.
- 32Y.-M. Ha, Y. N. Kim, Y.-O. Kim, C. So, J.-S. Lee, J. Kim, Y. C. Jung, Carbon Lett. 2020, 30, 457.
- 33D. Liu, H. Chi, C. Ma, M. Song, P. Zhang, P. Dai, Compos. Sci. Technol. 2022, 220, 109292.
- 34D. An, Z. Li, H. Chen, C. Liang, Z. Sun, J. Li, J. Yao, Y. Liu, C. Wong, Composites, Part A 2022, 156, 106890.
- 35Z. Su, H. Wang, X. Ye, K. Tian, W. Huang, J. He, Y. Guo, X. Tian, Composites, Part A 2018, 111, 12.
- 36H. Huang, X. Huang, Y. Xie, Y. Tian, X. Jiang, X. Zhang, Prog. Org. Coat. 2019, 130, 124.
- 37F. Jiang, X. Cui, N. Song, L. Shi, P. Ding, Compos. Commun. 2020, 20, 100350.
- 38J. W. Ren, Q. H. Li, L. Yan, L. C. Jia, X. L. Huang, L. H. Zhao, Q. C. Ran, M. L. Fu, Mater. Des. 2020, 191, 108663.
- 39I. Isarn, L. Bonnaud, L. Massagues, A. Serra, F. Ferrando, Prog. Org. Coat. 2019, 133, 299.
- 40T. Huang, X. L. Zeng, Y. M. Yao, R. Sun, F. L. Meng, J. B. Xu, C. P. Wong, RSC Adv. 2017, 7, 23355.
- 41Y. Lv, X. Lian, H. Sun, G. Wang, A. Osaka, Surf. Interfaces 2022, 28, 101614.
- 42H. Shen, Y. Wang, L. Cao, Y. Xie, L. Wang, X. Chu, K. Shi, S. Wang, M. Yu, R. Liu, J. Zhang, C. Li, Z. Weng, Z. Wang, Nanotechnology 2022, 33, 115302.
- 43J.-H. Sim, S. H. Lee, J.-Y. Yang, W.-C. Lee, C. Mun, S. Lee, S.-G. Park, Y.-R. Cho, Sens. Actuator B-Chem. 2022, 354, 131110.
- 44S. Jiao, Y. Liu, S. Wang, S. Wang, F. Ma, H. Yuan, H. Zhou, G. Zheng, Y. Zhang, K. Dai, C. Liu, Nanomaterials 2022, 12, 1398.
- 45Y. Xu, L. Shi, X. Jing, H. Miao, Y. Zhao, ACS Appl. Mater. Interfaces 2022, 14, 3293.
- 46V. Xiem Thi, T. Long Toan, P. Hai Van, M. T. Tuyet, J. Electron. Mater. 2022, 1857, 51.
- 47T. Zhu, Y. Sun, W. Lu, G. Wang, X. Zhang, S. Chen, C. Zhang, Z. Li, B. Man, C. Yang, J. Alloys Compd. 2022, 908, 164622.
- 48N. Zhang, J. J. Lin, W. Hu, S. Q. Zhang, L. B. Liang, R. Wang, X. Luo, Y. Luo, X. H. Qiu, J. Zhang, L. M. Tong, Nano Lett. 2019, 19, 1124.
- 49X. Ling, W. J. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. X. Lin, J. Zhang, J. Kong, M. S. Dresselhaus, Nano Lett. 2014, 14, 3033.
- 50Y. Tan, L. N. Ma, Z. B. Gao, M. Chen, F. Chen, Nano Lett. 2017, 17, 2621.
- 51Q. Cai, S. Mateti, K. Watanabe, T. Taniguchi, S. Huang, Y. Chen, L. H. Li, ACS Appl. Mater. Interfaces 2016, 8, 15630.
- 52Q. Cai, W. Gan, A. Falin, K. Watanabe, T. Taniguchi, J. Zhuang, W. Hao, S. Huang, T. Tao, Y. Chen, L. H. Li, ACS Appl. Mater. Interfaces 2020, 12, 21985.
- 53G. H. Hwang, Y. S. Kwon, J. S. Lee, Y. G. Jeong, J. Appl. Polym. Sci. 2020, 138, 50324.
- 54Y. Fang, J. Dong, X. Zhao, T. Chen, L. Xiang, Y. Xie, Q. Zhang, Composites, Part B 2020, 199, 108281.
- 55Y. Guo, G. Xu, X. Yang, K. Ruan, T. Ma, Q. Zhang, J. Gu, Y. Wu, H. Liu, Z. Guo, J. Mater. Chem. C 2018, 6, 3004.
- 56S.-N. Chen, X.-S. Liu, R.-H. Luo, E.-Z. Xu, J.-G. Tian, Z.-B. Liu, ACS Appl. Mater. Interfaces 2022, 14, 22626.
- 57W. Gao, Y. Liu, C. Cao, Y. Zhang, Y. Xue, C. Tang, J. Colloid Interface Sci. 2022, 610, 527.
- 58H. Yang, Z. Li, H. Zou, P. Liu, Polym. Adv. Technol. 2017, 28, 233.
- 59F. A. Khan, A. A. Jan, Y. Yun, S. Roy, D. Suh, J. Kim, S. Baik, Carbon 2019, 155, 138.
- 60J. Ding, H. Zhao, B. Xu, X. Zhao, S. Su, H. Yu, ACS Sustainable Chem. Eng. 2019, 7, 10900.
- 61K. Ruan, Y. Guo, Y. Tang, Y. Zhang, J. Zhang, M. He, J. Kong, J. Gu, Compos. Commun. 2018, 10, 68.
- 62W. Liang, X. Ge, J. Ge, T. Li, T. Zhao, X. Chen, M. Zhang, J. Ji, X. Pang, R. Liu, Nanomaterials 2019, 9, 938.
- 63Z. Chen, F. Tong, D. Zhu, X. Lu, Q. Lu, ACS Appl. Polym. Mater. 2019, 1, 914.
- 64T. Wang, M. Wang, L. Fu, Z. Duan, Y. Chen, X. Hou, Y. Wu, S. Li, L. Guo, R. Kang, N. Jiang, J. Yu, Sci. Rep. 2018, 8, 1557.
- 65J. Li, X. Zhao, W. Wu, Z. Zhang, Y. Xian, Y. Lin, Y. Lu, L. Zhang, Carbon 2020, 162, 46.
- 66L. Chen, K. Li, B. Li, D. Ren, S. Chen, M. Xu, X. Liu, Compos. Sci. Technol. 2019, 182, 107741.
- 67C. Wang, B. Cong, J. Zhao, X. Zhao, D. Wang, H. Zhou, C. Chen, RSC Adv. 2020, 10, 13517.
- 68Y. Guo, Z. Lyu, X. Yang, Y. Lu, K. Ruan, Y. Wu, J. Kong, J. Gu, Composites, Part B 2019, 164, 732.
- 69C. Chen, Y. Xue, Z. Li, Y. Wen, X. Li, F. Wu, X. Li, D. Shi, Z. Xue, X. Xie, Chem. Eng. J. 2019, 369, 1150.
- 70X. Yang, Y. Guo, X. Luo, N. Zheng, T. Ma, J. Tan, C. Li, Q. Zhang, J. Gu, Compos. Sci. Technol. 2018, 164, 59.
- 71H. L. Lee, O. H. Kwon, S. M. Ha, B. G. Kim, Y. S. Kim, J. C. Won, J. Kim, J. H. Choi, Y. Yoo, Phys. Chem. Chem. Phys. 2014, 16, 20041.
- 72T.-L. Li, S. L.-C. Hsu, J. Appl. Polym. Sci. 2011, 121, 916.
- 73Z.-R. Jia, Z.-G. Gao, D. Lan, Y.-H. Cheng, G.-L. Wu, H.-J. Wu, Chin. Phys. B 2018, 27, 117806.
- 74N. Yang, C. Xu, J. Hou, Y. Yao, Q. Zhang, M. E. Grami, L. He, N. Wang, X. Qu, RSC Adv. 2016, 6, 18279.
- 75R. Wang, H. Cheng, Y. Gong, F. Wang, X. Ding, R. Hu, X. Zhang, J. He, X. Tian, ACS Appl. Mater. Interfaces 2019, 11, 42818.
- 76L. H. Li, Y. Chen, Adv. Funct. Mater. 2016, 26, 2594.
- 77T.-B. Ma, H. Ma, K.-P. Ruan, X.-T. Shi, H. Qiu, S.-Y. Gao, J.-W. Gu, Chin. J. Polym. Sci. 2022, 40, 248.
- 78Z. Liu, X. Fan, L. Cheng, J. Zhang, L. Tang, Y. Tang, J. Kong, J. Gu, Adv. Fiber Mater. 2022, 4, 520.