Simple and efficient anionic polymerization of N-phenylmaleimide with fluorides as an initiator
Corresponding Author
Jingbo Wu
Department of Chemistry and Biochemistry and the Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, Texas, 75080
Correspondence to: J. Wu (E-mail: [email protected]) and S. Sun (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Shasha Sun
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003 People's Republic of China
Correspondence to: J. Wu (E-mail: [email protected]) and S. Sun (E-mail: [email protected])Search for more papers by this authorBruce M. Novak
Department of Chemistry and Biochemistry and the Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, Texas, 75080
Search for more papers by this authorCorresponding Author
Jingbo Wu
Department of Chemistry and Biochemistry and the Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, Texas, 75080
Correspondence to: J. Wu (E-mail: [email protected]) and S. Sun (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Shasha Sun
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003 People's Republic of China
Correspondence to: J. Wu (E-mail: [email protected]) and S. Sun (E-mail: [email protected])Search for more papers by this authorBruce M. Novak
Department of Chemistry and Biochemistry and the Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, Texas, 75080
Search for more papers by this authorABSTRACT
The facile anionic polymerization of N-phenylmaleimide (N-PMI) using fluorides as an initiator has been discovered and systematically investigated. Effect of different solvents such as dioxane, tetrahydrofuran, dichloromethane (DCM), dimethyl sulfoxide (DMSO), N-methylpyrrolidone, acetonitrile, toluene, and acetone and effect of anionic initiators such as tetra-n-butylammonium fluoride (TBAF), cesium fluoride, and potassium fluoride have been studied. The kinetics of polymerization using TBAF as an initiator in DMSO is also studied. Some of the resulting poly(PMI)s are characterized by gel permeation chromatography, solubility test, attenuated total reflection-Fourier transform infrared, nuclear magnetic resonance (NMR), and 13C-NMR spectral analysis. The thermal behaviors are studied by thermogravimetric and differential scanning calorimetric analysis. A proposed polymerization mechanism is also discussed. Our results show fluoride can effectively induce the polymerization of N-PMI in various solvents under very mild conditions with good to excellent yields. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 137, 48909.
Supporting Information
Filename | Description |
---|---|
app48909-sup-0001-Figures.pdfPDF document, 311.2 KB | Figure S11H NMR of the polymerization mixture in DMSO-d6 after adding TBAF/THF at room temperature Figure S2. 1H NMR spectra of the polymerization of PMI in CD2Cl2 at different times. Figure S3. The 19F NMR spectra of TBAF and the mixture of TBAF and equivalent N-phenylmaleimide in the mixture of DMSO (90%) and DMSO-d6 (10%) |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Mikroyannidis, J. A.; Melissaris, A. P. J. Appl. Polym. Sci. 1989, 37, 2587.
- 2Cubbon, R. C. P. Polymer. 1965, 6, 419.
- 3Hagiwara, T.; Shimizu, T.; Someno, T.; Yamagishi, T.; Hamana, H.; Narita, T. Macromolecules. 1988, 21, 3324.
- 4Hagiwara, T.; Mizota, J.; Hamana, H.; Narita, T. Makromol. Chem. Rapid. 1985, 6, 169.
- 5Zhao, B.; Wang, Y.; Lu, C.; Shen, Q.; Deng, M. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 3966.
- 6Lu, Y.; Sun, W.; Shen, Z. J. Appl. Polym. Sci. 2005, 96, 979.
- 7Azechi, M.; Toyota, N.; Yamabuki, K.; Onimura, K.; Oishi, T. Polym. Bull. 2011, 67, 631.
- 8Wang, X.; Chen, D.; Ma, W.; Yang, X.; Lu, L. J. Appl. Polym. Sci. 1999, 71, 665.
- 9Hagiwara, T.; Sekino, Y.; Hamana, H.; Narita, T. Polym. J. 1994, 26, 349.
- 10Takeishi, M.; Arimori, S.; Iwasaki, N.; Sekiya, K.; Sato, R. Polym. J. 1992, 24, 365.
- 11Kanno, S.; Hosoi, M.; Ogata, T.; Takeishi, M. Polym. Int. 1997, 42, 321.
- 12Seris, A.; Feve, M.; Mechin, F.; Pascault, J. P. J. Appl. Polym. Sci. 1993, 48, 257.
- 13Tesoro, G. C.; Pendharkar, S. M. Polym. Adv. Technol. 1994, 5, 521.
- 14Ivanov, A. A.; Primel'yes, E. Polym. Sci. U.S.S.R. 1984, 26, 1453.
10.1016/0032-3950(84)90060-1 Google Scholar
- 15Wu, J.; Xi, Y.; McCandless, G. T.; Kulikov, O. V.; Menon, R.; Novak, B. M. RSC Adv. 2015, 5, 75547.
- 16Padie, C.; Zeitler, K. New J. Chem. 2011, 35, 994.
- 17Clark, J. H. Chem. Rev. 1980, 80, 429.
- 18Clark, J. H.; Miller, J. M. J. Am. Chem. Soc. 1977, 99, 498.
- 19Gangaram, S.; Adimulam, C. S.; Akula, R. K.; Kengiri, R.; Pamulaparthy, S. R.; Madabhushi, S.; Banda, N. Chem. Lett. 2013, 42, 1522.
- 20Ogilvie, K. K.; Beaucage, S. L.; Gillen, M. F.; Entwistle, D. W. Nucleic Acids Res. 1979, 6, 2261.
- 21Ooi, T.; Sugimoto, H.; Doda, K.; Maruoka, K. Tetrahedron Lett. 2001, 42, 9245.
- 22Sato, T.; Otera, J.; Nozaki, H. J. Org. Chem. 1992, 57, 2166.
- 23Clark, J. H.; Cork, D. G.; Gibbs, H. W. J. Chem. Soc. Perkin Trans. 1983, 1, 2253.
- 24Ishikawa, T.; Oku, Y.; Kotake, K.-I.; Ishii, H. J. Org. Chem. 1996, 61, 6484.
- 25Denmark, S. E.; Lee, W. J. Org. Chem. 1994, 59, 707.
- 26Lelean, P. M.; Morris, J. A. Chem. Commun. 1968, 6, 239.
- 27Kumbhare, R. M.; Sridhar, M. Cat. Commun. 2008, 9, 403.
- 28Bhalla, V.; Singh, H.; Kumar, M. Org. Lett. 2009, 12, 628.
- 29Nambu, Y.; Endo, T. J. Org. Chem. 1993, 58, 1932.
- 30Zhao, H.; Gabbaï, F. o. P. Org. Lett. 2011, 13, 1444.
- 31Evano, G.; Nitelet, A.; Thilmany, P.; Dewez, D. F. Front. Chem. 2018, 6, 114.
- 32Gao, S.; Tsai, C. H.; Tseng, C.; Yao, C.-F. Tetrahedron. 2008, 64, 9143.
- 33Imai, Y.; Ueda, M.; Ii, M. Die Makromolekul. Chem. 1978, 179, 2989.
- 34Choi, S.-K.; Kwon, S.-K.; Yi, M.-H. J. Polym. Sci. Part A: Polym. Chem. 1987, 25, 2021.
- 35Sandoval-Díaz, L.; Coy-Barrera, E.; Trujillo, C. Reac. Kinet. Mech. Cat. 2012, 105, 335.
- 36Sogah, D. Y.; Hertler, W. R.; Webster, O. W.; Cohen, G. M. Macromolecules. 1987, 20, 1473.
- 37Montague, R. A.; Matyjaszewski, K. J. Am. Chem. Soc. 1990, 112, 6721.
- 38Murthy, S. K.; Olsen, B. D.; Gleason, K. K. Langmuir. 2002, 18, 6424.
- 39Morinaga, H.; Ujihara, Y.; Endo, T. J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 3461.
- 40Sanji, T.; Iyoda, T. J. Am. Chem. Soc. 2014, 136, 10238.
- 41Sugiyama, K.; Fukada, S. J. Polym. Sci.: Polym. Lett. Ed. 1984, 22, 437.
- 42Hino, T.; Endo, T. Macromolecules. 2003, 36, 4672.
- 43Hoffmann, U.; Helmer-Metzmann, F.; Klapper, M.; Muellen, K. Macromolecules. 1994, 27, 3575.
- 44Zheng, F.; Xiong, W.; Sun, S.; Zhang, P.; Zhu, J. J. Nanophotonics. 2019, 8, 391.
- 45Ding, J.; Day, M.; Robertson, G. P.; Roovers, J. Macromol. Chem. Phys. 2004, 205, 1070.
- 46Ding, J.; Du, X.; Day, M.; Jiang, J.; Callender, C. L.; Stupak, J. Macromolecules. 2007, 40, 3145.
- 47Roy, A.; Kand, D.; Saha, T.; Talukdar, P. Chem. Commun. 2014, 50, 5510.
- 48Albanese, D.; Landini, D.; Penso, M. J. Org. Chem. 1998, 63, 9587.
- 49Zhang, J. H.; Kong, Q. H.; Wang, D. Y. J. Mater. Chem. A. 2018, 6, 6376.
- 50Kong, Q. H.; Wu, T.; Zhang, J. H.; Wang, D. Y. Compos. Sci. Technol. 2018, 154, 136.