Nonisothermal crystallization kinetics of PLA/nanosized YVO4 composites as a novel nucleating agent
Corresponding Author
Safaa H. El-Taweel
Chemistry Department, Faculty of Science, Cairo University, Orman-Giza, 12613 Egypt
Correspondence to: S. H. El-Taweel (E-mail: [email protected])Search for more papers by this authorMostafa Abboudi
Chemistry Department, Faculty of Science, Taibah University, Al-MadinahAl-Munawarah, 30002 Saudi Arabia
Search for more papers by this authorCorresponding Author
Safaa H. El-Taweel
Chemistry Department, Faculty of Science, Cairo University, Orman-Giza, 12613 Egypt
Correspondence to: S. H. El-Taweel (E-mail: [email protected])Search for more papers by this authorMostafa Abboudi
Chemistry Department, Faculty of Science, Taibah University, Al-MadinahAl-Munawarah, 30002 Saudi Arabia
Search for more papers by this authorABSTRACT
The influence of nanosized YVO4 particles as a novel and efficient nucleating agent on the nonisothermal crystallization behaviors of poly(lactic acid) (PLA) was studied. A modified Avrami model was utilized to describe the nonisothermal crystallization kinetics of pure PLA and PLA nanocomposites. The differential isoconversional Friedmann formula was employed to calculate the effective activation energies (EX(t)) of nonisothermal crystallization from the glass state. The results showed that modified Avrami methods describe the nonisothermal crystallization kinetics of pure PLA and PLA nanocomposites well. The crystallization rate of PLA/1 mass% YVO4 was faster than that of pure PLA sample by factor 5 × 103 at a heating rate of 1 K min−1. While the values of Lauritzen–Hoffman parameters (Kg and U*) of the PLA/YVO4 nanocomposites were lower than those of pure PLA, indicating the nucleation efficiency of nanosized YVO4 particles for PLA. Scanning electron microscopy images reflect the uniform dispersion of 1 mass% YVO4 in PLA matrix. Thermogravimetric analysis results revealed that the thermal degradation parameters are slightly lowered by 7 °C on increasing the mass percentage of YVO4 in the PLA nanocomposites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48340.
REFERENCES
- 1Andrady, A. L. Mar. Pollut. Bull. 2017, 119, 12.
- 2North, E. J.; Halden, R. U. Rev. Environ. Health. 2013, 28, 1.
- 3Bogaert, J.-C.; Coszach, P. Macromol. Symp. 2000, 153, 287.
- 4Gregory, M. R. Philos. Trans. R. Soc. B: Biol. Sci. 2009, 364, 2013.
- 5Hopewell, J.; Dvorak, R.; Kosior, E. Philos. Trans. R. Soc. B: Biol. Sci. 2009, 364, 2115.
- 6Ren, J. Biodegradable Poly(Lactic Acid): Synthesis, Modification, Processing and Applications; Springer Berlin Heidelberg: Berlin, Germany, 2010. p. 15.
10.1007/978-3-642-17596-1_3 Google Scholar
- 7Iwata, T. Angew. Chem. Int. Ed. 2015, 54, 3210.
- 8Mülhaupt, R. Macromol. Chem. Phys. 2013, 214, 159.
- 9Chen, G.-Q.; Patel, M. K. Chem. Rev. 2012, 112, 2082.
- 10Madhavan Nampoothiri, K.; Nair, N. R.; John, R. P. Bioresour. Technol. 2010, 101, 8493.
- 11Peelman, N.; Ragaert, P.; Ragaert, K.; De Meulenaer, B.; Devlieghere, F.; Cardon, L. J. Appl. Polym. Sci. 2015, 132, n/a.
- 12Akrami, M.; Ghasemi, I.; Azizi, H.; Karrabi, M.; Seyedabadi, M. Carbohydr. Polym. 2016, 144, 254.
- 13Raquez, J. M.; Habibi, Y.; Murariu, M.; Dubois, P. Prog. Polym. Sci. 2013, 38, 1504.
- 14Zhang, Z.; He, Z.; Yang, J.; Huang, T.; Zhang, N.; Wang, Y. Polym. Test. 2016, 51, 82.
- 15Jain, S.; Misra, M.; Mohanty, A. K.; Ghosh, A. K. J. Polym. Environ. 2012, 20, 1027.
- 16Khuenkeao, T.; Petchwattana, N.; Covavisaruch, S. AIP Conf. Proc. 2016, 1713, 080005.
- 17Qin, Y.; Yang, J.; Yuan, M.; Xue, J.; Chao, J.; Wu, Y.; Yuan, M. J. Appl. Polym. Sci. 2014, 131, n/a.
- 18Refaa, Z.; Boutaous, M.; Xin, S.; Fulchiron, R. J. Polym. Res. 2017, 24, 18. https://doi.org/10.1007/s10965-016-1179-y.
- 19Papageorgiou, G. Z.; Achilias, D. S.; Nanaki, S.; Beslikas, T.; Bikiaris, D. Thermochim. Acta. 2010, 511, 129.
- 20Zou, Z.; Luo, C.; Luo, B.; Wen, W.; Liu, M.; Zhou, C. Compos. Sci. Technol. 2016, 133, 128.
- 21Shi, X.; Zhang, G.; Siligardi, C.; Ori, G.; Lazzeri, A. J. Nanomater. 2015, 2015, 1.
- 22Phetwarotai, W.; Aht-Ong, D. J. Therm. Anal. Calorim. 2017, 127, 2367.
- 23Rajan, K. P.; Al-Ghamdi, A.; Thomas, S. P.; Gopanna, A.; Chavali, M.J. Thermoplast. Compos. Mater. 2018, 31, 1042.
- 24Fortunati, E.; Armentano, I.; Iannoni, A.; Kenny, J. M. Polym. Degrad. Stab. 2010, 95, 2200.
- 25Su, Z.; Guo, W.; Liu, Y.; Li, Q.; Wu, C. Polym. Bull. 2009, 62, 629.
- 26Di, Y.; Iannace, S.; Di Maio, E.; Nicolais, L. J. Polym. Sci. Part B: Polym. Phys. 2005, 43, 689.
- 27Li, C.; Dou, Q. Thermochim. Acta. 2014, 594, 31.
- 28Xu, Y.; Wang, Y.; Xu, T.; Zhang, J.; Liu, C.; Shen, C. Polym. Test. 2014, 37, 179.
- 29Kawamoto, N.; Sakai, A.; Horikoshi, T.; Urushihara, T.; Tobita, E. J. Appl. Polym. Sci. 2007, 103, 198.
- 30Li, Y.; Zhen, W. Polym. Adv. Technol. 2017, 28, 1617.
- 31Zhang, R.; Wang, Y.; Wang, K.; Zheng, G.; Li, Q.; Shen, C. Polym. Bull. 2013, 70, 195.
- 32Kusumi, R.; Teranishi, S.; Kimura, F.; Wada, M.; Kimura, T.; Horikawa, Y.; Kawai, T. Polymers. 2018, 10, 653.
- 33Kshetri, Y. K.; Regmi, C.; Kim, H.-S.; Lee, S. W.; Kim, T.-H. Nanotechnology. 2018, 29, 204004.
- 34Rafiaei, S. M.; Shokouhimehr, M. Mater. Res. Express. 2018, 5, 116208.
- 35Yang, L.; Peng, S.; Zhao, M.; Yu, L.; Wang, Y. J. Lumin. 2019, 205, 548.
- 36Huang, S.; Wang, Z.; Zhu, Q.; Shi, X.; Wang, X.; Li, X.; Sun, X.; Li, J. G. J. Alloys Compd. 2019, 794, 35.
- 37Rafiaei, S. M.; Ashrafi, F.; Sayyadi-Shahraki, A.; Karimzadeh, E. Ceram. Int. 2019, 45, 1670.
- 38Rajendra, H. J.; Pandurangappa, C.; Monika, D. L. J. Rare Earths. 2018, 36, 1245.
- 39Shao, J.; Yan, J.; Li, X.; Li, S.; Hu, T. Dyes Pigments. 2019, 160, 555.
- 40Yang, H. K.; Moon, B. K.; Choi, B. C.; Jeong, J. H.; Kim, K. H. J. Electrochem. Soc. 2012, 159, J227.
- 41Li, Y. H.; Zang, G. F.; Ma, J. Adv. Mater. Res. 2013, 634–638, 2268.
10.4028/www.scientific.net/AMR.634-638.2268 Google Scholar
- 42Reitz, C.; Smarsly, B.; Brezesinski, T. ACS Appl. Nano Mater. 2019, 2, 1063.
- 43Huignard, A.; Buissette, V.; Laurent, G.; Gacoin, T.; Boilot, J. P. Chem. Mater. 2002, 14, 2264.
- 44Aiube, C. M.; Lobo, T. M.; Sousa-Moura, D.; Ferraz, I. B. M.; Osugi, M. E.; Grisolia, C. K.; Oliveira, R.; Weber, I. T. J. Environ. Chem. Eng. 2018, 6, 2846.
- 45Chen, Q.; Zhao, C.; Wang, Y.; Chen, Y.; Ma, Y.; Chen, Z.; Yu, J.; Wu, Y.; He, Y. Sol. Energy. 2018, 171, 426.
- 46Alkahtani, M. H.; Gomes, C. L.; Hemmer, P. R. Opt. Lett. 2017, 42, 2451.
- 47Shao, J.; Liu, C.; Zhou, X.; Hong, L.; Yan, J.; Kang, Z. Mater. Sci. Semicond. Process. 2018, 84, 58.
- 48Woźny, P.; Szczeszak, A.; Lis, S. Opt. Mater. (Amst). 2018, 76, 400.
- 49Yang, H.; Seo, S.; Abboudi, M.; Holloway, P. J. Ceram. Process. Res. 2007, 8, 256.
- 50He, H.; Liu, X.; Song, Y.; Wang, C.; Cao, M.; Yan, A.; Wang, Z. Optik. 2018, 175, 172.
- 51Moura, I.; Nogueira, R.; Bounor-Legare, V.; Machado, A. V. Mater. Chem. Phys. 2012, 134, 103.
- 52Liao, R.; Yang, B.; Yu, W.; Zhou, C. J. Appl. Polym. Sci. 2007, 104, 310.
- 53Kovalcik, A.; Pérez-Camargo, R. A.; Fürst, C.; Kucharczyk, P.; Müller, A. J. Polym. Degrad. Stab. 2017, 142, 244.
- 54Petchwattana, N.; Covavisaruch, S.; Petthai, S. Polym. Bull. 2014, 71, 1947.
- 55Aliotta, L.; Cinelli, P.; Coltelli, M. B.; Righetti, M. C.; Gazzano, M.; Lazzeri, A. Eur. Polym. J. 2017, 93, 822.
- 56Wu, W.; Wu, G.; Zhang, H. Polym. Adv. Technol. 2017, 28, 252.
- 57Vidović, E.; Faraguna, F.; Jukić, A. J. Therm. Anal. Calorim. 2017, 127, 371.
- 58Mandelkern, L. Frontmatter. In Crystallization of Polymers. Equilibrium Concepts; Cambridge: Cambridge University Press, 2011; Vol. 1, pp. I-IV.
- 59Jeziorny, A. Polymer. 1978, 19, 1142.
- 60Zhou, W. Y.; Duan, B.; Wang, M.; Cheung, W. L. J. Appl. Polym. Sci. 2009, 113, 4100.
- 61Friedman, H. L. J. Polym. Sci. Part C: Polym. Symp. 2007, 6, 183.
10.1002/polc.5070060121 Google Scholar
- 62Vyazovkin, S.; Dranca, I. Macromol. Chem. Phys. 2006, 207, 20.
- 63Vyazovkin, S.; Sbirrazzuoli, N. Macromol. Rapid Commun. 2006, 27, 1515.
- 64Vyazovkin, S.; Sbirrazzuoli, N. J. Phys. Chem. B. 2003, 107, 882.
- 65Vyazovkin, S.; Sbirrazzuoli, N. Macromol. Rapid Commun. 2004, 25, 733.
- 66Hoffman, J. D.; Miller, R. L. Polymer. 1997, 38, 3151.
- 67Kumar, V.; Dev, A.; Gupta, A. P. Compos. Part B: Eng. 2014, 56, 184.
- 68Paul, M. A.; Delcourt, C.; Alexandre, M.; Degée, P.; Monteverde, F.; Dubois, P. Polym. Degrad. Stab. 2005, 87, 535.
- 69Chelghoum, N.; Guessoum, M.; Fois, M.; Haddaoui, N. J. Polym. Environ. 2018, 26, 342.
- 70Ma, F.; Lu, X.; Wang, Z.; Sun, Z.; Zhang, F.; Zheng, Y. J. Phys. Chem. Solid. 2011, 72, 111.
- 71Rapacz-Kmita, A.; Gajek, M.; Dudek, M.; Stodolak-Zych, E.; Szaraniec, B.; Lach, R. J. Therm. Anal. Calorim. 2017, 127, 389.
- 72Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Prog. Polym. Sci. 2010, 35, 338.