Zeolite reinforced carboxymethyl cellulose-Na+-g-cl-poly(AAm) hydrogel composites with pH responsive phosphate release behavior
Corresponding Author
Anupama Singh
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
Correspondence to: A. Singh (E-mail: [email protected])Search for more papers by this authorDhruba Jyoti Sarkar
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorShailja Mittal
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorRashmi Dhaka
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorPushkar Maiti
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorAarushi Singh
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorTaruna Raghav
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorDilip Solanki
Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorNayan Ahmed
Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorShashi Bala Singh
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorCorresponding Author
Anupama Singh
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
Correspondence to: A. Singh (E-mail: [email protected])Search for more papers by this authorDhruba Jyoti Sarkar
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorShailja Mittal
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorRashmi Dhaka
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorPushkar Maiti
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorAarushi Singh
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorTaruna Raghav
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorDilip Solanki
Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorNayan Ahmed
Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorShashi Bala Singh
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorABSTRACT
Phosphate fixation in soils is a matter of concern in agriculture. Conventional application of phosphorus fertilizer suffers from low P use constraint, particularly in acidic soils. Rhizosphere centric slow release strategy bears tremendous prospects. In the present study, monocalcium phosphate (MCP) was impregnated in zeolite reinforced CMC-Na+-g-cl-Poly(Aam) hydrogel composites with aim to develop slow phosphate release device for soil application. X-ray diffraction, scanning electron microscopy, and Fourier transform-infrared spectroscopy confirmed the successful synthesis of slow release fertilizer formulations. Presence of zeolite in composite matrix during polymerization resulted in higher MCP loading. The “burst release” phenomena under neutral aqueous environment as compared to diffusion led slow release mechanism under acidic condition suggesting that phosphate release from developed composite matrix was pH responsive. The developed materials possess potential to serve as tool for improving phosphate use efficiency under resource stress agriculture. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47332.
REFERENCES
- 1Bhardwaj, A. K.; Shainberg, I.; Goldstein, D.; Warrington, D. N.; Levy, G. J. Soil Sci. Soc. Am. J. 2007, 71, 406.
- 2Singh, A.; Sarkar, D. J.; Singh, A. K.; Parsad, R.; Kumar, A.; Parmar, B. S. J. Appl. Polym. Sci. 2011, 120, 1448.
- 3Chandrika, K. S. V. P.; Singh, A.; Sarkar, D. J.; Rathore, A.; Kumar, A. J. Appl. Polym. Sci. 2014, 131, 41060.
- 4Rudzinski, W. E.; Dave, A. M.; Vaishnav, U. H.; Kumber, S. G.; Kulkarni, A. R.; Aminabhavi, T. M. Des. Monomers Polym. 2002, 5, 39.
- 5Kumar, V.; Singh, A.; Das, T. K.; Sarkar, D. J.; Singh, S. B.; Dhaka, R.; Kumar, A. J. Environ. Sci. Health (B). 2017, 52, 402.
- 6Chandrika, K. S. V. P.; Singh, A.; Rathore, A.; Kumar, A. Carbohydr. Polym. 2016, 149, 175.
- 7Xu, K.; Wang, J.; Xiang, S.; Chen, Q.; Yue, Y.; Su, X.; Song, C.; Wang. Compos. Sci. Technol. 2007, 67, 3480.
- 8Li, A.; Wang, A.; Chen, J. J. Appl. Polym. Sci. 2004, 94, 1869.
- 9Park, H. W.; Lee, W. K.; Park, C. Y.; Cho, W. J. J. Mater. Sci. 2003, 38, 909.
- 10Lin, J.; Wu, J.; Yang, Z.; Pu, M. Macromol. Rapid Commun. 2001, 22, 422.
- 11Sarkar, D. J.; Singh, A. Carbohydr. Polym. 2016, 156, 303.
- 12Sarkar, D. J.; Singh, A.; Gaur, S. R.; Shenoy, A. V. J. Appl. Polym. Sci. 2016, 133, 43969.
- 13Haraguchi, K.; Farnworth, R.; Ohbayashi, A.; Takehisa, T. Macromolecules. 2003, 36, 5732.
- 14Liang, R.; Liu, M. J. Appl. Polym. Sci. 2007, 106, 3007.
- 15Vaughan, D. Properties of natural zeolites. In Natural Zeolites: Occurrence, Properties, Use; L. Sand; F. Mumpton, Eds., Pergamon Press: New York, 1978. p. 353.
- 16Bansiwal, A. K.; Rayalu, S. S.; Labhasetwar, N. K.; Juwarkar, A. A.; Devotta, S. J. Agric. Food Chem. 2006, 54, 4773.
- 17Sarkar, D. J.; Singh, A.; Mondal, P.; Kumar, A.; Parmar, B. S. Polym. Plast. Technol. Eng. 2015, 54, 357.
- 18Mendes, G. O.; Silva, N. M. R. M.; Anastácio, T. C.; Vassilev, N. B.; Ribeiro, J. I.; Silva, I. R.; Costa, M. D. J. Microb. Biotechnol. 2015, 8, 930.
- 19Abbasi, M. K.; Musa, N.; Manzoor, M. Biogeosciences. 2015, 12, 4607.
- 20Tyliszczak, B.; Polaczek, J.; Pielichowski, J.; Pielichowski, K. Macromol. Symp. 2009, 279, 236.
- 21Noppakundilograt, S.; Pheatcharat, N.; Kiatkamjornwong, S. J. Appl. Polym. Sci. 2014, 132, 41249.
10.1002/app.41249 Google Scholar
- 22Su, Y.; Liu, J.; Yue, Q.; Li, Q.; Gao, B. Environ. Technol. 2014, 35, 446.
- 23Zhong, K.; Zheng, X. L.; Mao, X. Y.; Lin, Z. T.; Jiang, G. B. Carbohyd. Polym. 2012, 90, 820.
- 24Zhong, K.; Lin, Z. T.; Zheng, X. L.; Jiang, G. B.; Fang, Y. S.; Mao, X. Y.; Liao, Z. W. Carbohyd. Polym. 2013, 92, 1367.
- 25Erro, J.; Urrutia, O.; SanFrancisco, S.; Garcia-Mina, J. M. J. Agric. Food Chem. 2007, 55, 7831.
- 26Davidson, D. W.; Verma, M. S.; Gu, F. X. SpringerPlus. 2013, 2, 318.
- 27Alang, M. B.; Barminas, J. T.; Aliyu, B. A.; Osemeahon, S. A. Int. J. Biol. Chem. Sci. 2011, 5, 1694.
- 28Olsen, S. R.; Sommers, L. E. Phosphorus. In Methods of Soil Analysis, Part 2; A. L. Page; R. H. Miller, Eds.; Agronomy monographs 9, ASA and ASSA: Madison, WI, 1982. p. 403.
- 29Sommers, L. E.; Nelson, D. W. Soil Sci. Soc. Am. J. 1972, 36, 902.
- 30Dosen, A.; Giese, R. F. Am. Mineral. 2011, 96, 368.
- 31Zou, Z.; Liu, X.; Chen, L.; Lin, K.; Chang, J. J. Mater. Chem. 2012, 22, 22637.
- 32Duncan, J.; MacDonald, J. F.; Hanna, J. V.; Shirosaki, Y.; Hayakawa, S.; Osaka, A.; Skakle, J. M. S.; Gibson, I. R. Mater. Sci. Eng. C. 2014, 34, 123.
- 33Chen, S. Y.; Ou, S. F.; Teng, N. C.; Kung, C. M.; Tsai, H. L.; Chu, K. T.; Ou, K. L. Ceram. Int. 2013, 39, 2451.
- 34Jinawath, S.; Pongkao, D.; Suchanek, W.; Yoshimura, M. Int. J. Inorg. Mater. 2001, 3(7), 997.
- 35Castaldi, P.; Santona, L.; Cozza, C.; Giuliano, V.; Abbruzzese, C.; Nastro, V.; Melis, P. J. Mol. Struct. 2005, 734, 99.
- 36Ślósarczyk, A.; Paluszkiewicz, C.; Gawlicki, M.; Paszkiewicz, Z. Ceram. Int. 1997, 23, 297.
- 37Chen, L.; Ahadi, A.; Zhou, J.; Ståhl, J. E. Proc. CIRP. 2013, 8, 334.
- 38Sakai, T.; Nakamura, A. M. Earth Planets Space. 2005, 57, 71.
- 39Nakazawa, T.; Usui, K.; Ogawa, M.; Abe, K.; Tokita, T. Process for preparation of zeolite slurry excellent in static stability and dynamic stability, US Pat. 4622166A (1986).
- 40Zhang, Y.; Gao, P.; Zhao, L.; Chen, Y. Front. Chem. Sci. Eng. 2016, 10, 147.
- 41Pourjavadi, A.; Soleyman, R.; Iranian, J. Chem. Chem. Eng. Int. 2010, 29, 113.
- 42Panitchakarn, P.; Laosiripojana, N.; Viriya-umpikul, N.; Pavasant, P. J. Air Waste Manage. Assoc. 2014, 64, 586.
- 43Ritger, P. L.; Peppas, N. A. J. Controlled Release. 1987, 5, 23.
- 44Gallagher, K. M.; Corrigan, O. I. J. Controlled Release. 2000, 69, 261.
- 45Kumar, M.; Jha, A. K.; Hazarika, S.; Verma, B. C.; Choudhury, B. U.; Ramesh, T.; Moirangthem, P.; Kumar, R.; Rajkhowa, D. J.; Kumar, A.; Devi, M. H. Natl. Acad. Sci. Lett. 2016, 39, 85.
- 46Liu, C.; Thormann, E.; Claesson, P. M.; Tyrode, E. Langmuir. 2014, 30, 8878.
- 47Hibbins, A. R.; Kumar, P.; Choonara, Y. E.; Kondiah, P. P.; Marimuthu, T.; du Toit, L. C.; Pillay, V. Polymer. 2017, 9, 474.
- 48Chen, G.; Yao, K.; Zhao, J. J. Appl. Polym. Sci. 1999, 73, 425.
- 49Chen, J.; Zhao, Y. J. Appl. Polym. Sci. 1999, 74, 119.
- 50Tiwari, K. N. Phosphorous. In Fundamentals of Soil Science, Indian Society of Soil Science; N. N. Goswami; R. K. Rattan; G. Dev; G. Narayanasamy; D. K. Das; S. K. Sanyal; D. K. Pal; D. L. N. Rao, Eds.; Indian Society of SOil Science, 2009. p. 413.
- 51Zhan, F.; Liu, M.; Guo, M.; Wu, L. J. Appl. Polym. Sci. 2004, 92, 3417.
- 52Jamnongkan, T.; Kaewpirom, S. Sci. JUBU. 2010, 1, 43.