Immobilization of Trametes versicolor laccase on different PGMA-based polymeric microspheres using response surface methodology: Optimization of conditions
Myleidi Vera
Department of Polymer, Faculty of Chemistry, University of Concepción, Casilla, Concepción, 160-C Chile
Search for more papers by this authorCorresponding Author
Bernabé L. Rivas
Department of Polymer, Faculty of Chemistry, University of Concepción, Casilla, Concepción, 160-C Chile
Correspondence to: B. L. Rivas (E-mail: [email protected])Search for more papers by this authorMyleidi Vera
Department of Polymer, Faculty of Chemistry, University of Concepción, Casilla, Concepción, 160-C Chile
Search for more papers by this authorCorresponding Author
Bernabé L. Rivas
Department of Polymer, Faculty of Chemistry, University of Concepción, Casilla, Concepción, 160-C Chile
Correspondence to: B. L. Rivas (E-mail: [email protected])Search for more papers by this authorABSTRACT
Enzymatic immobilization is a versatile alternative to improve enzyme stability and enable its reuse. In this study, the change in the immobilized enzyme properties due to the type of functional group on the carrier was evaluated. For that, monodisperse polymeric microspheres with two functional groups widely used in laccase immobilization—oxirane [poly(glycidyl methacrylate) (PGMA)] and hydrazide—were synthesized by dispersion polymerization to covalently immobilize the laccase Trametes versicolor. Using a response surface methodology, laccase immobilization was optimized for each microsphere type. As a result, laccase immobilization on PGMA carriers appears to broaden the pH and temperature ranges, storage stability, and reusability compared to free and hydrazide enzymes. These aforementioned characteristics indicate that PGMA microspheres could act as an ideal support for enzyme immobilization in biotechnological applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45249.
REFERENCES
- 1 Rivera, C. M.; Morales, E. D.; Poutou, R. A.; Pedroza, A. M.; Rodriguez, R.; Delgado, J. M. Fungal Biol. Rev. 2013, 27, 67.
- 2 Leroya, M. T.; Jolivalt, C.; Fromenta, M.; Brasmec, B.; Lefebvred, B.; Daveloosed, D.; Nachona, F.; Masson, P. Chem. Biol. Interact. 2010, 187, 393.
- 3 Kocaoba, S.; Arısoy, M. Bioresour. Technol. 2011, 102, 8035.
- 4 Rodgers, C. J.; Blanford, C. F.; Giddens, S. R.; Skamnioti, P.; Armstrong, F. A.; Gurr, S. J. Trends Biotechnol. 2010, 28, 63.
- 5 Riva, S. Trends Biotechnol. 2006, 24, 219.
- 6 Roth, S.; Spiess, A. C. Bioprocess Biosyst. Eng. 2015, 38, 2285.
- 7 Fernández, M. F.; Sanromán, M. A.; Moldes, D. Biotechnol. Adv. 2013, 31, 1808.
- 8 Durán, N.; Rosa, M. A.; D'Annibale, A.; Gianfreda, L. Enzyme Microb. Technol. 2002, 31, 907.
- 9 Dogan, T.; Bayram, E.; Uzun, L.; Senel, S.; Denizli, A. J. Appl. Polym. Sci. 2015, 132, DOI: 10.1002/app.41981.
- 10 Salviano, C.; Gentil de Farias, C. M.; de Sousa, M.; Barros, L. R. J. Appl. Polym. Sci. 2015, 132, DOI: 10.1002/app.42125.
- 11 Ji, C.; Hou, J.; Wang, K.; Zhang, Y.; Chen, V. J. Membr. Sci. 2016, 502, 11.
- 12 Kuwahara, T.; Nakata, K.; Kondo, M.; Shimomura, M. Synth. Met. 2016, 214, 30.
- 13 Kašpar, O.; Tokárová, V.; Nyanhongo, G. S.; Gübitz, G.; Štěpánek, F. Food Bioprod. Process 2013, 91, 525.
- 14 Fernandes, S. C.; De Oliveira, I. R. W. Z.; Fatibello, O.; Spinellia, A.; Cruz, I. Sens. Actuators B 2008, 133, 202.
- 15 Xu, S.; Peng, B.; Han, X. Eur. Polym. J. 2006, 42, 2801.
- 16 Mansor, A. F.; Mohidem, N. A.; Izyani, W. N.; Zawawi, W. M.; Othman, N. S.; Endud, S.; Mat, H. Micropor. Mesopor. Mater. 2016, 220, 308.
- 17 Takahashi, K.; Uyama, H.; Kobayashi, S. Polym. J. 1998, 30, 684.
- 18 Dong, X.; Zheng, Y.; Huang, Y.; Chen, X.; Jing, X. Anal. Biochem. 2010, 405, 207.
- 19 Bai, F.; Yang, X.; Li, R.; Huang, B.; Huang, W. Polymer 2006, 47, 5775.
- 20 Patel, S. K. S.; Kalia, V. C.; Choi, J. H.; Haw, J. R.; Kim, I. W.; Lee, J. K. J. Microbiol. Biotechnol. 2014, 24, 639.
- 21 Badgujar, K. C.; Bhanage, B. M. Process Biochem. 2015, 50, 1224.
- 22 Uygun, M. J. Chem. 2013, 2013, 1, DOI: 10.1155/2013/387181
- 23 Baltierra, E.; Márquez, L.; Sánchez, J. M. J. Microbiol. Methods 2015, 119, 126.
- 24 Jolivalt, C.; Brenon, S.; Caminade, E.; Mougin, C.; Pontié, M. J. Membr. Sci. 2000, 180, 103.
- 25 Bayramoğlu, G.; Arıca, M. Y. Mater. Sci. Eng. C 2009, 29, 1990.
- 26 Fei, B. W. C.; Hanifah, S. A.; Ahmad, A.; Hassan, N. H. AIP Conf. Proc. 2015, 1678, DOI: 10.1063/1.4931288.
- 27 Imperiyka, M.; Ahmad, A.; Hanifah, S. A.; Rahman, M. Y. A. Int. J. Electrochem. Sci. 2013, 8, 10932.
- 28 Mazlan, S. Z.; Rahim, F.; Hanifah, S. A. Int. J. Polym. Sci. 2014, 2014, DOI: 10.1155/2014/591898.
- 29 Radzir, N. N. M.; Anuar, F. H.; Hanifah, S. A.; Ahmad, A.; Hassan, N. H. J. Mater. Environ. Sci. 2015, 6, 1436.
- 30 Espinosa, M. H.; Del Toro, P. J. O.; Silva, D. Z. Polymer 2011, 42, 3393.
- 31 Brar, A. S.; Kapur, G. S. Polym. J. 1988, 20, 811.
- 32 Brar, A. S.; Yadav, A. Eur. Polym. J. 2003, 39, 15.
- 33 Hooda, S.; Kumar, R.; Kaur, M. Indian J. Chem. Sect. A 2004, 43, 527.
- 34 Lettera, V.; Pezzella, C.; Cicatiello, P.; Piscitelli, A.; Giacobelli, V. G.; Galano, E.; Amoresano, A.; Sannia, G. Food Chem. 2016, 196, 1272.
- 35 Pang, S.; Wu, Y.; Zhang, X.; Li, B.; Ouyang, J.; Ding, M. Process Biochem. 2016, 51, 229.
- 36 Asgher, M.; Noreen, S.; Bilal, M. Int. J. Biol. Macromol. 2017, 95, 54.
- 37 Brady, D.; Jordaan, J. Biotechnol. Lett. 2009, 31, 1639, DOI: 10.1007/s10529-009-0076-4.
- 38 Prasetyo, E. N.; Semlitsch, S.; Nyanhongo, G. S.; Lemmouchi, Y.; Guebitz, G. M. Chemosphere 2016, 144, 652.
- 39 Sun, H.; Yang, H.; Huang, H.; Zhang, S. J. Colloid Interface Sci. 2015, 450, 353.
- 40 Arıca, M. Y.; Bayramoǧlu, G.; Bıçak, N. Process Biochem. 2004, 39, 2007.
- 41 Tavares, A. P. M.; Silva, C. G.; Drazíc, G.; Silva, A. M. T.; Loureiro, J. M.; Joaquim, L. F. J. Colloid Interface Sci. 2015, 454, 52.
- 42 Karagoz, B.; Bayramoglu, G.; Altintas, B.; Bicak, N.; Arica, M. Y. Bioresour. Technol. 2011, 102, 6783.
- 43 Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Talanta 2008, 76, 965.