Electrochemical behavior of a Nafion-membrane-based solid-state supercapacitor with a graphene oxide—multiwalled carbon nanotube—polypyrrole nanocomposite
Corresponding Author
Mir Ghasem Hosseini
Department of Physical Chemistry, University of Tabriz, Tabriz, Iran
Engineering Faculty, Department of Materials Science and Nanotechnology, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
Correspondence to: M. G. Hosseini (E-mail: [email protected])Search for more papers by this authorHaleh Rasouli
Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
Search for more papers by this authorElham Shahryari
Department of Physical Chemistry, University of Tabriz, Tabriz, Iran
Search for more papers by this authorLeila Naji
Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
Search for more papers by this authorCorresponding Author
Mir Ghasem Hosseini
Department of Physical Chemistry, University of Tabriz, Tabriz, Iran
Engineering Faculty, Department of Materials Science and Nanotechnology, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
Correspondence to: M. G. Hosseini (E-mail: [email protected])Search for more papers by this authorHaleh Rasouli
Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
Search for more papers by this authorElham Shahryari
Department of Physical Chemistry, University of Tabriz, Tabriz, Iran
Search for more papers by this authorLeila Naji
Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
Search for more papers by this authorABSTRACT
In this study, we sprayed a graphene oxide–multiwalled carbon nanotube (GM) suspension in isopropyl alcohol–water onto a Nafion membrane. The electrodeposition of polypyrrole (PPy) was carried out on Nafion to complete the fabrication of a solid-state symmetric supercapacitor. Nafion 117 membranes are used as electrolyte separators in the preparation of supercapacitors. The characterization of the symmetric supercapacitor was done by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the symmetric solid-state supercapacitor were investigated by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques in 1M lithium chloride. A specific capacitance of 90.4 mF/cm2 (258.3 F/g1) was obtained for the supercapacitor at a scan rate of 10 mV s−1. Maximum energy and power densities of 10 W h/kg and 6031 W/kg were obtained for the fabricated supercapacitor. In such a symmetric configuration, the highly interconnection networks of GM–PPy provided good structure for the supercapacitor electrode, and the good interaction between PPy and GM provided fast electron- and charge-transportation paths so that a high capacitance was achieved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44926.
REFERENCES
- 1 Sidhu, N. K.; Rastogi, A. C. Synth. Met. 2016, 219, 1.
- 2 Hosseini, M. G.; Shahryari, E.; Najjar, R.; Ahadzadeh, I. Int. J. Nanosci. Nanotechnol. 2015, 11, 147.
- 3 Shao, Y.; El-Kady, M. F.; Wang, L. J.; Zhang, Q.; Li, Y.; Wang, H.; Mousavi, M. F.; Kaner, R. B. Chem. Soc. Rev. 2015, 44, 3639.
- 4 Yan, Y.; Cheng, Q.; Zhu, Z.; Pavlinek, V.; Saha, P.; Li, C. J. Power Sources 2013, 240, 544.
- 5 Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520.
- 6 Winter, M.; Brodd, R. Chem. Rev. 2005, 105, 1021.
- 7 Luo, H.-M.; Chen, H.; Chen, Y.-Z.; Li, P.; Zhang, J.-Q.; Zhao, X. J. Appl. Electrochem. 2016, 46, 703.
- 8 Liu, F.; Wang, S.; Han, G.; Liu, R.; Chang, Y.; Xiao, Y. J. Appl. Polym. Sci. 2014, 131, DOI: 10.1002/app.41023.
- 9 Boddula, R.; Srinivasan, P. J. Appl. Polym. Sci. 2015, 132, DOI: 10.1002/app.42510.
- 10 Yu, Z.; Tetard, L.; Zhai, L.; Thomas, J. Energy Environ. Sci. 2015, 8, 702.
- 11 Xiong, S.; Shi, Y.; Chu, J.; Gong, M.; Wu, B.; Wang, X. Electrochim. Acta 2014, 127, 139.
- 12 Singu, B. S.; Palaniappan, S.; Yoon, K. R. J. Appl. Electrochem. 2016, 46, 1039.
- 13 Ervin, M. H.; Levine, L. B.; Nichols, B. M.; Parker, T. C. J. Appl. Electrochem. 2016, 46, 1075.
- 14 Ryu, K. S.; Wu, X.; Lee, Y.-G.; Chang, S. H. J. Appl. Polym. Sci. 2003, 89, 1300.
- 15 Aradilla, D.; Estrany, F.; Alemán, C. J. Phys. Chem. C 2011, 115, 8430.
- 16 Lu, X.; Dou, H.; Bo Gao, C. Y.; Yang, S.; Hao, L.; Shen, L.; Zhang, X. Electrochim. Acta 2011, 56, 5115.
- 17 Gao, Z.; Yang, W.; Wang, J.; Song, N.; Li, X. Nano Energy 2015, 13, 306.
- 18 Du, H.; Xie, Y.; Xia, C.; Wang, W.; Tian, F.; Zhou, Y. Mater. Lett. 2014, 132, 417.
- 19 Xiang, X.; Zhang, W.; Yang, Z.; Zhang, Y.; Zhang, H.; Zhang, H.; Guo, H.; Zhang, X.; Li, Q. RSC Adv. 2016, 6, 24946.
- 20 Conway, B. E. Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum: New York, 1999.
- 21 Meng, C.; Liu, C.; Chen, L.; Hu, C.; Fan, S. Nano Lett. 2010, 10, 4025.
- 22 Hu, S.; Rajamani, R.; Yu, X. Appl. Phys. Lett. 2012, 100, 104103.
- 23 Liu, Q.; Nayfeh, O.; Nayfeh, M. H.; Yau, S.-T. Nano Energy 2013, 2, 133.
- 24 Chen, Q.; Li, X.; Zang, X.; Cao, Y.; He, Y.; Li, P.; Wang, K.; Wei, J.; Wu, D.; Zhu, H. RSC Adv. 2014, 4, 36253.
- 25 Lufrano, F.; Staiti, P. Electrochem. Solid-State Lett. A 2004, 7, 447.
- 26
Bar-Cohen, Y. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges; SPIE: Washington, DC, 2004.
10.1117/3.547465 Google Scholar
- 27 Naji, L.; Chudek, J. A.; Abel, E. W.; Baker, R. T. J. Mater. Chem. B 2013, 1, 2502.
- 28 Kim, B.; Kwon, J.; Ko, J.; Park, J.; Too, C.; Wallace, G. Synth. Met. 2010, 160, 94.
- 29 Hummers, W. S.; Offeman, R. E. 1958, 80, 1339.
- 30 Pak, J. J.; Cha, S. E.; Ahn, H. J.; Lee, S. K. Proc. 32nd Intl. Symp. Robot. (ISR), 2002, 51, 455.
- 31 Naji, L.; Chudek, J. A.; Baker, R. T. J. Phys. Chem. B 2008, 112, 9761.
- 32 Naji, L.; Chudek, J. A.; Baker, R. T. Soft Matter 2008, 4, 1879.
- 33
Vernitskaya, T. V.;
Efimov, O. N. Russ. Chem. Rev. 1997, 66, 443.
10.1070/RC1997v066n05ABEH000261 Google Scholar
- 34
Tat'yana, V. V.;
Oleg, N. E. Russ. Chem. Rev. 1997, 66, 443.
10.1070/RC1997v066n05ABEH000261 Google Scholar
- 35 Rasouli, H.; Naji, L.; Hosseini, M. G. RSC Adv. 2017, 7, 3190.
- 36 Li, J.-J.; Ma, Y.-W.; Jiang, X.; Feng, X.-M.; Fan, Q.-L.; Huang, W. IEEE Trans. Nanotechnol. 2012, 11, 3.
- 37 Hosseini, M. G.; Shahryari, E. Iran. Chem. Commun. 2016, 3, 67.
- 38 Zhang, H.; Wang, J.; Shan, Q.; Wang, Z.; Wang, S. Electrochim. Acta 2013, 90, 535.
- 39 Yan, W.; Ayvazian, T.; Kim, J.; Liu, Y.; Donavan, K. C.; Xing, W.; Yang, Y.; Hemminger, J. C.; Penner, R. M. ACS Nano 2011, 5, 8275.
- 40 Mirmohseni, A.; Dorraji, M. S. S.; Hosseini, M. G. Electrochim. Acta 2012, 70, 182.
- 41 Lewandowski, A.; Olejniczak, A.; Galinski, M.; Stepniak, I. J. Power Sources 2010, 195, 5814.
- 42 Hosseini, M. G.; Shahryari, E. J. Mater. Sci. Technol. 2016, 32, 763.
- 43 Taberna, P.; Simon, P.; Fauvarque, J.-F. J. Electrochem. Soc. A 2003, 150, 292.
- 44 Joseph, J.; Paravannoor, A.; Nair, S. V.; Han, Z. J.; Ostrikov, K.; Balakrishnan, A. J. Mater. Chem. A 2015, 3, 14105.
- 45 Abdulhakeem, B.; Farshad, B.; Damilola, M.; Fatemeh, T.; Mopeli, F.; Julien, D.; Ncholu, M. RSC Adv. 2014, 4, 39066.
- 46 de Oliveira, H. P.; Sydlik, S. A.; Swager, T. M. J. Phys. Chem. C 2013, 117, 10270.
- 47 Zhang, J.; Zhao, X. S. J. Phys. Chem. C 2012, 116, 5420.
- 48 Babu, K. F.; Subramanian, S. P. S.; Kulandainathan, M. A. Carbohydr. Polymer 2013, 94, 487.
- 49 Wang, J.; Xu, Y.; Chen, X.; Sun, X. Compos. Sci. Technol. 2007, 67, 2981.
- 50 Chaudhari, S.; Sharma, Y.; Archana, P. S.; Jose, R.; Ramakrishna, S.; Mhaisalkar, S.; Srinivasan, M. J. Appl. Polym. Sci. 2013, 129, 1660.
- 51 Khomenko, V.; Frackowiak, E.; Béguin, F. Electrochim. Acta 2005, 50, 2499.
Citing Literature
20 June 2017