Sustainable biobased blends from the reactive extrusion of polylactide and acrylonitrile butadiene styrene
Ryan Vadori
College of Physical and Engineering Science, School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Department of Plant Agriculture, Bioproducts Discovery and Development Centre (BDDC), Crop Science Building, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
Search for more papers by this authorCorresponding Author
Manjusri Misra
College of Physical and Engineering Science, School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Department of Plant Agriculture, Bioproducts Discovery and Development Centre (BDDC), Crop Science Building, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
Correspondence to: A. K. Mohanty (E-mail: [email protected]) and M. Misra (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Amar K. Mohanty
College of Physical and Engineering Science, School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Department of Plant Agriculture, Bioproducts Discovery and Development Centre (BDDC), Crop Science Building, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
Correspondence to: A. K. Mohanty (E-mail: [email protected]) and M. Misra (E-mail: [email protected])Search for more papers by this authorRyan Vadori
College of Physical and Engineering Science, School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Department of Plant Agriculture, Bioproducts Discovery and Development Centre (BDDC), Crop Science Building, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
Search for more papers by this authorCorresponding Author
Manjusri Misra
College of Physical and Engineering Science, School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Department of Plant Agriculture, Bioproducts Discovery and Development Centre (BDDC), Crop Science Building, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
Correspondence to: A. K. Mohanty (E-mail: [email protected]) and M. Misra (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Amar K. Mohanty
College of Physical and Engineering Science, School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Department of Plant Agriculture, Bioproducts Discovery and Development Centre (BDDC), Crop Science Building, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
Correspondence to: A. K. Mohanty (E-mail: [email protected]) and M. Misra (E-mail: [email protected])Search for more papers by this authorABSTRACT
Polymer blends containing poly(lactic acid) (PLA) and acrylonitrile butadiene styrene (ABS) with high biobased content (50%) were made by extrusion and injection molding. Two additives, one acrylic copolymer and one chain extender were used separately and in combination to increase mechanical properties. Interestingly, the combination of both the acrylic copolymer and chain extender worked to synergistically increase the impact strength by almost 600%. This was attributed to the complementary additive toughening effects which allowed increased energy dissipation of the blend at high speed testing, such as in the impact test. Morphology and rheology investigation showed that the two additives worked together to vastly change the dispersion and phase sizes, suggesting a decreased tension between the PLA and ABS. Finally, Fourier transform infrared spectroscopy supported the evidence that the epoxy groups of the chain extender undergo ring opening to react with the functional groups of the PLA. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43771.
REFERENCES
- 1 Auras, R.; Lim, L.-T.; Selke, S. E. M.; Tsuji, H. Polylactic Acid—Synthesis, Properties, Processing and Applications; Wiley: Hoboken, New Jersey, 2010.
- 2 Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Prog. Polym. Sci. 2010, 35, 338.
- 3 Al-Itry, R.; Lamnawar, K.; Maazouz, A. Polym. Degrad. Stab. 2012, 97, 1898.
- 4 Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Prog. Polym. Sci. 2012, 37, 1657.
- 5 Lim, L. T.; Auras, R.; Rubino, M. Prog. Polym. Sci. 2008, 33, 820.
- 6 Lasprilla, A. J. R.; Martinez, G. A. R.; Lunelli, B. H.; Jardini, A. L.; Filho, R. M. Biotechnol. Adv. 2012, 30, 321.
- 7 Garlotta, D. J. Polym. Environ. 2001, 9, 63.
- 8 Liu, H.; Zhang, J. J. Polym. Sci. Part B: Polym. Phys. 2011, 49, 1051.
- 9 Anderson, K. S.; Schreck, K. M.; Hillmyer, M. A. Polym. Rev. 2008, 48, 85.
- 10 Kfoury, G.; Raquez, J. M.; Hassouna, F.; Odent, J.; Toniazzo, V.; Ruch, D.; Dubois, P. Front. Chem. 2013, 1, 32.
- 11 Barentsen, W. M.; Heikens, D. Polymer 1973, 14, 579.
- 12 Lovinger, A. J.; Williams, M. L. J. Appl. Polym. Sci. 1980, 25, 1703.
- 13 Mansfield, M.; Boyd, R. H. J. Polym. Sci. Polym. Phys. Ed. 1978, 16, 1227.
- 14 Hale, W. R.; Pessan, L. A.; Keskkula, H.; Paul, D. R. Chem. Eng. 1999, 40, 4237.
- 15 Kudva, R. A. Polymer 2000, 41, 225.
- 16 Zhang, X.; Chen, Y.; Zhang, Y.; Peng, Z.; Zhang, Y.; Zhou, W. J. Appl. Polym. Sci. 2001, 81, 831.
- 17 Dong, W.; He, M.; Wang, H.; Ren, F.; Zhang, J.; Zhao, X.; Li, Y. ACS Sustain. Chem. 2015, 3, 2542.
- 18 Vadori, R. Studies on the Reactive Blending of Poly(lactic acid) and Acrylonitrile Butadiene Styrene Rubber. M.A.Sc. Thesis, University of Guelph, Guelph, ON, 2013.
- 19 Choe, I. J.; Lee, J. H.; Yu, J. H.; Yoon, J. S. J. Appl. Polym. Sci. 2014, 131, doi:10.1002/app.40329.
- 20 Li, Y.; Shimizu, H. Macromol. Biosci. 2007, 7, 921.
- 21 Sun, S.; Zhang, M.; Zhang, H.; Zhang, X. J. Appl. Polym. Sci. 2011, 122, 2992.
- 22 Utracki, L. A.; Wilkie, C. A. Polymer Blends Handbook; Vol. 1. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2002.
- 23 Utracki, L. A. Canadian J. Chem. Eng. 2002, 80, 1008.
- 24 Al-Itry, R.; Lamnawar, K.; Maazouz, A. Rheol. Acta 2014, 53, 501.
- 25 Wu, S. Polym. Eng. Sci. 1987, 27, 335.
- 26 Harada, M.; Iida, K.; Okamoto, K.; Hayashi, H.; Hirano, K. Polym. Eng. Sci. 2008, 48, 1359.
- 27 Ojijo, V.; Ray, S. Polymer 2015, 80, 1.
- 28 Doi, M. Introduction to Polymer Physics; Oxford University Press: Oxford, 1996.
- 29 Gedde, U. Polymer Physics; Springer Science & Business Media: Dordrecht, 1995.
- 30 Li, Y.; Shimizu, H. Eur. Polym. J. 2009, 45, 738.
- 31 Yang, J.; Zhang, Y.; Zhang, Y. Polymer 2003, 44, 5047.
- 32 Doi, M.; Edwards, S. F. J. Chem. Soc. Faraday Trans. 2 1978, 74, 1789.
- 33 Wu, C. P.; Wang, C. C.; Chen, C. Y. Polym. Plast. Technol. Eng. 2015, 54, 1043.
- 34 Najafi, N.; Heuzey, M. C.; Carreau, P. J.; Wood-Adams, P. M. Polym. Degrad. Stab. 2012, 97, 554.
- 35 Liu, H.; Chen, F.; Liu, B.; Estep, G.; Zhang, J. Macromolecules 2010, 43, 6058.
- 36 Li, H.; Huneault, M. A. Polymer 2007, 48, 6855.
- 37 Zhang, L.; Xiong, C.; Deng, X. Polymer 1996, 37, 235.
- 38 Fischer, E. W.; Sterzel, H. J.; Wegner, G. Z. Kolloid, Z. Polymer 1973, 251, 980.
- 39 Gu, S. Y.; Zhang, K.; Ren, J.; Zhan, H. Carbohydr. Polym. 2008, 74, 79.
- 40 Ferry, J. D. Viscoelastic Properties of Polymers; Wiley: New York, 1980.
- 41 Dealy, J. M.; Wissbrun, K. Melt Rheology and Its Role in Plastics Processing; Kluwer Academic Publishers: Dordrecht, 2012.
- 42 Davies, M. C.; Shakesheff, K. M.; Shard, A. G.; Domb, A.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M. Macromolecules 1996, 29, 2205.