Semi-IPN of biopolyurethane, benzyl starch, and cellulose nanofibers: Structure, thermal and mechanical properties
Md Minhaz-Ul Haque
Division of Materials Science, Luleå University of Technology, Luleå, SE, 97187 Sweden
Search for more papers by this authorCorresponding Author
Kristiina Oksman
Division of Materials Science, Luleå University of Technology, Luleå, SE, 97187 Sweden
Fiber and Particle Engineering, University of Oulu, Oulu, FI, 90014 Finland
Correspondence to: K. Oksman (E-mail: [email protected])Search for more papers by this authorMd Minhaz-Ul Haque
Division of Materials Science, Luleå University of Technology, Luleå, SE, 97187 Sweden
Search for more papers by this authorCorresponding Author
Kristiina Oksman
Division of Materials Science, Luleå University of Technology, Luleå, SE, 97187 Sweden
Fiber and Particle Engineering, University of Oulu, Oulu, FI, 90014 Finland
Correspondence to: K. Oksman (E-mail: [email protected])Search for more papers by this authorABSTRACT
The aim of this study was to develop bionanocomposites of biopolyurethane (PU), benzyl starch (BS), and cellulose nanofibers (CNF) with semi-interpenetrating polymer network (S-IPN) structure of improved properties. Morphology, thermal and mechanical properties of S-IPN blends and nanocomposites were studied and compared with the neat polymers. Microscopy study showed that PU and BS were partially miscible as well as CNF were dispersed in both PU and BS phases in the nanocomposites. Dynamic mechanic thermal analysis demonstrated that BS decreased the tan δ peak of the PU while CNF increased it. The positive shifting of tan δ peak in the S-IPN nanocomposite also indicated the presence of CNF in the PU phase. It was also noticed that S-IPN nanocomposite displayed two tan δ peaks at higher temperature, indicating molecular interaction among BS, PU, and CNF. Furthermore, the S-IPN nanocomposites displayed significantly higher E-modulus and tensile strength compared with the neat PU. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43726.
REFERENCES
- 1Imre, B.; Pukánszky, B. Eur. Polym. J. 2013, 49, 1215.
- 2Carvalho, A.; Job, A.; Alves, N.; Curvelo, A.; Gandini, A. Carbohydr. Polym. 2003, 53, 95.
- 3Chang, P. R.; Ai, F.; Chen, Y.; Dufresne, A.; Huang, J. J. Appl. Polym. Sci. 2009, 111, 619.
- 4Ge, X.; Xu, Y.; Meng, Y.; Li, R. Compos. Sci. Technol. 2005, 65, 2219.
- 5Santayanon, R.; Wootthikanokkhan, J. Carbohydr. Polym. 2003, 51, 17.
- 6Garcia, P. S.; Grossmann, M. V. E.; Shirai, M. A.; Lazaretti, M. M.; Yamashita, F.; Muller, C. M. O.; Mali, S. Indus. Crops. Prod. 2014, 52, 305.
- 7Mandal, A.; Chakrabarty, D. Carbohydr. Polym. 2015, 134, 240.
- 8Cao, X.; Deng, R.; Zhang, L. Ind. Eng. Chem. Res. 2006, 45, 4193.
- 9Cao, X.; Zhang, L. J. Polym. Sci. Part B: Polym. Phys. 2005, 43, 603.
- 10Klempner, D.; Sperling, L. H.; Utracki, L. A. Interpenetrating Polymer Networks; No. CONF-910812; American Chemical Society: Washington, DC, 1994,
10.1021/ba-1994-0239 Google Scholar
- 11Alemán, J.; Chadwick, A. V.; He, J.; Hess, M.; Horie, K.; Jones, R. G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G. Pure Appl. Chem. 2007, 79, 1801.
- 12Liu, C.; Ding, J.; Zhou, L.; Chen, S. J. Appl. Polym. Sci. 2006, 102, 1489.
- 13Chikh, L.; Delhorbe, V.; Fichet, O. J. Membr. Sci. 2011, 368, 1.
- 14Dragan, E. S. Chem. Eng. J. 2014, 243, 572.
- 15Zhu, M.; Bandyopadhyay-Ghosh, S.; Khazabi, M.; Cai, H.; Correa, C.; Sain, M. J. Appl. Polym. Sci. 2012, 124, 4702.
- 16Ang, K. P.; Lee, C. S.; Cheng, S. F.; Chuah, C. H. J. Appl. Polym. Sci. 2014, 131, DOI: 10.1002/app.39967.
- 17Zafar, F.; Zafar, H.; Sharmin, E. J. Appl. Polym. Sci. 2014, 131,
- 18Bird, S.; Clary, D.; Jajam, K.; Tippur, H.; Auad, M. Polym. Eng. Sci. 2013, 53, 716.
- 19Hojabri, L.; Kong, X.; Narine, S. S. Biomacromolecules 2009, 10, 884.
- 20Athawale, V. D.; Kolekar, S. L.; Raut, S. S. J. Macromol. Sci. Part C: Polym. Rev. 2003, 43, 1.
- 21Vlad, S.; Vlad, A.; Oprea, S. Eur. Polym. J. 2002, 38, 829.
- 22Devia, N.; Manson, J.; Sperling, L.; Conde, A. Macromolecules 1979, 12, 360.
- 23Pei, A.; Malho, J.; Ruokolainen, J.; Zhou, Q.; Berglund, L. A. Macromolecules 2011, 44, 4422.
- 24Marcovich, N.; Auad, M.; Bellesi, N.; Nutt, S.; Aranguren, M. J. Mater. Res. 2006, 21, 870.
- 25De Rodriguez, N. L. G.; Thielemans, W; Dufresne, A. Cellulose 2006, 13, 261.
- 26Beck-Candanedo, S.; Roman, M.; Gray, D. G. Biomacromolecules 2005, 6, 1048.
- 27Terech, P.; Chazeau, L.; Cavaille, J. Macromolecules 1999, 32, 1872.
- 28Alemdar, A.; Sain, M. Compos. Sci. Technol. 2008, 68, 557.
- 29Pelissari, F. M.; do Amaral Sobral, P. J.; Menegalli, F. C. Cellulose 2014, 21, 417.
- 30Abraham, E.; Deepa, B.; Pothan, L.; Jacob, M.; Thomas, S.; Cvelbar, U.; Anandjiwala, R. Carbohydr. Polym. 2011, 86, 1468.
- 31Angles, M. N.; Dufresne, A. Macromolecules 2001, 34.
- 32Jonoobi, M.; Harun, J.; Mathew, A. P.; Oksman, K. Compos. Sci. Technol. 2010, 70, 1742.
- 33Gong, G.; Pyo, J.; Mathew, A. P.; Oksman, K. Compos. Part A: Appl. Sci. Manuf. 2011, 42, 1275.
- 34Hietala, M.; Mathew, A. P.; Oksman, K. Eur. Polym. J. 2013, 49, 950.
- 35Pracella, M.; Haque, M. M.; Puglia, D. Polymer 2014, 55, 3720.
- 36Dufresne, A.; Cavaille, J.; Helbert, W. Polym. Compos. 1997, 18, 198.
- 37Herrera, N.; Mathew, A. P.; Oksman, K. Compos. Sci. Technol. 2015, 106, 149.
- 38D2765-01 (reapproved 2006) Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics; ASTM International, West Conshohocken, PA 2006.
- 39Barikani, M.; Hepburn, C.; Iranian, J. Polym. Sci. Technol. 1992, 1,
- 40Visakh, P.; Thomas, S.; Oksman, K.; Mathew, A. P. J. Appl. Polym. Sci. 2012, 124, 1614.
- 41Pothan, L. A.; Oommen, Z.; Thomas, S. Compos. Sci. Technol. 2003, 63, 283.
- 42Hourston, D. J.; Schäfer, F. Polymer 1996, 37, 3521.
- 43Gao, S.; Zhang, L. Macromolecules 2001, 34, 2202.
- 44Lu, Y.; Zhang, L. Polymer 2002, 43, 3979.
- 45Zhou, Q.; Zhang, L.; Zhang, M.; Wang, B.; Wang, S. Polymer 2003, 44, 1733.
- 46Pittman, C.; Xu, X.; Wang, L.; Toghiani, H. Polymer 2000, 41, 5405.
- 47Molero, C.; de Lucas, A.; Rodríguez, J. F. Polym. Degrad. Stab. 2008, 93, 353.
- 48Lefebvre, J.; Bastin, B.; Le Bras, M.; Duquesne, S.; Paleja, R.; Delobel, R. Polym. Degrad. Stab. 2005, 88, 28.
- 49Chuayjuljit, S.; Sangpakdee, T.; Saravari, O. J. Metals Mater. Miner. 2007, 17, 7.
- 50Pawlik, H.; Prociak, A. J. Polym. Environ. 2012, 20, 438.
- 51Saraf, V. P.; Glasser, W. G. J. Appl. Polym. Sci. 1984, 29, 1831.
- 52Ravey, M.; Pearce, E. M. J. Appl. Polym. Sci. 1997, 63, 47.
- 53Bakirova, I.; Valuev, V.; Demchenko, I.; Zenitova, L. Polym. Sci.Series A Chem. Phys. 2002, 44, 615.
- 54Pielichowski, K.; Kulesza, K.; Pearce, E. M. J. Appl. Polym. Sci. 2003, 88, 2319.