Polyester composite water uptake and organic contaminant release affected by carbon nanofiber reinforcements
Maryam Salehi
Division of Ecological and Environmental Engineering and Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, 47907
Search for more papers by this authorAjay Krishnamurthy
Material and Structural Systems Division, Engineering Laboratory, National Institute for Standards and Technology, Gaithersburg, Maryland, 20899
Search for more papers by this authorAaron M. Forster
Material and Structural Systems Division, Engineering Laboratory, National Institute for Standards and Technology, Gaithersburg, Maryland, 20899
Search for more papers by this authorKuang–Ting Hsiao
Department of Mechanical Engineering, 3130 Shelby Hall, University of South Alabama, Mobile, Alabama, 36688
Search for more papers by this authorCorresponding Author
Andrew J. Whelton
Division of Ecological and Environmental Engineering and Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, 47907
Correspondence to: A. J. Whelton (E-mail: [email protected])Search for more papers by this authorMaryam Salehi
Division of Ecological and Environmental Engineering and Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, 47907
Search for more papers by this authorAjay Krishnamurthy
Material and Structural Systems Division, Engineering Laboratory, National Institute for Standards and Technology, Gaithersburg, Maryland, 20899
Search for more papers by this authorAaron M. Forster
Material and Structural Systems Division, Engineering Laboratory, National Institute for Standards and Technology, Gaithersburg, Maryland, 20899
Search for more papers by this authorKuang–Ting Hsiao
Department of Mechanical Engineering, 3130 Shelby Hall, University of South Alabama, Mobile, Alabama, 36688
Search for more papers by this authorCorresponding Author
Andrew J. Whelton
Division of Ecological and Environmental Engineering and Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, 47907
Correspondence to: A. J. Whelton (E-mail: [email protected])Search for more papers by this authorABSTRACT
The incorporation of carbon nanofiber (CNF) into glass fiber (GF) composites is a potential route to extend polymer composite service-life and enhance mechanical properties. Under nonstatic conditions, only limited information concerning water uptake and contaminant release properties of nanocomposite materials is currently available. Polyester composites containing GF and oxidized CNF were immersed in water for 30 days under nominal pressure at 23 °C, below the polymer's glass-transition temperature. Water was analyzed and changed every three days to simulate water chemistry regeneration similar to exposures in flowing systems. Composites with oxidized CNF had greater water sorption capacity and leaching rates than CNF-free composites. The total mass of organic contaminant released correlated with the amount of water sorbed by each composite (r2 = 0.91), although CNF dispersion was found to vary greatly within composites. The greatest and least contaminant release rates were found for the polyester-CNF and the polyester-GF composites, respectively. While volatile aromatic resin solvents and stabilizer compounds were detected, their concentrations declined over the 30 day exposure period. We hypothesize that the hydrophilic nature of the oxidized CNF increased the water sorption capacity of the polyester composites. Additional studies are warranted that examine the impact of this phenomenon on composite mechanical and long-term durability properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43724.
REFERENCES
- 1 American National Standards Institute (ANSI)/AWWA. Standard C950–07 for Fiberglass Pressure Pipe; American National Standards Institute: Denver, CO, 2007.
- 2 AWWA. M45 Fiberglass Pipe Design, 2nd ed.; AWWA: Denver, CO, 2005.
- 3 Crathorne, B.; James, C. P.; Norris, M. Effect of Distribution on Organic Contaminants in Potable Water. Final Report to the Department of Environment. Water Research Centre (WRc): Birmingham, UK, 1990.
- 4 GangaRao, H.; Liang, R. Advanced Fiber Reinforced Polymer Composites for Sustainable Civil Infrastructures. Proceedings of the International Symposium on Innovation & Sustainability of Structures in Civil Engineering, Xiamen University, China, 2011.
- 5 GangaRao, H.; Vijay, P. V. Feasibility Review of FRP Materials for Structural Applications. Report submitted to US Army Corps of Engineers; Engineering Research & Development Center: Vicksburg, MS, USA, 2010.
- 6 Ehsani, M.; Peña, C. FRP Repair of Mile–Long Pipeline with Minimum Downtime, The Northern California Pipe User's Group. Proceedings of the 18th Annual Sharing Technologies Seminar, Berkley, CA, USA, February 2010.
- 7 Varga, C. S.; Miskolczi, N.; Bartha, L.; Lipoczi, G. Mater. Des. 2010, 31, 185.
- 8 Karbhari, V. M. Durability Data for FRP Rehabilitation Systems, Final Report. Submitted to the California Department of Transportation, Contract No. 59A0309, Sacramento, CA, USA, February 2009.
- 9 Gamstedt, E. K.; Skrifvars, M.; Jacobsen, T. K.; Pyrz, R. Compos. A 2002, 33, 1239.
- 10 Salibi, Z. Desalination 2001, 138, 379.
- 11 Khanna, V.; Bakshi, B. R. Environ. Sci. Technol. 2009, 43, 2078.
- 12 Sahin, ÖS.; Akdemir, A.; Avci, A.; Gemi, L. J. Reinforced Plast. Compos. 2009, 28, 2957.
- 13 Li, B.; Wood, W.; Baker, L.; Sui, G.; Lee, C.; Zhong, W. H. Polym. Eng. Sci. 2010, 50, 1914.
- 14 Gou, J.; O'Braint, S.; Gu, H.; Song, G. J. J. Nanomater. 2006, 32803, 1.
- 15 Sadeghian, R.; Gangireddy, S.; Minaie, B.; Hsiao, K.–T. Compos. A 2006, 37, 1787.
- 16 Finegan, I. C.; Tibbetts, G. G.; Glasgow, D. G.; Ting, J. M.; Lake, M. L. J. Mater. Sci. 2003, 38, 3485.
- 17 McDonald, E.; Whelton, A. J.; Jefferson, G. A.; Nguyen, T. Am. Soc. Mech. Eng. (ASME) Early Career Tech. J. 2011, 1.
- 18 Lee, J.; Mahendra, S.; Alvarez, P. J. J. ACS Nano 2010, 4, 3580.
- 19 Whelton, A. J.; Duncan, T. V.; Koontz, J.; Nguyen, T. Nanoparticle Release from Polymer Nanocomposites Used for Potable Water Infrastructure and Food Packaging: Current Progress &beyond. Proceedings of Nanotech Conference and Exposition. Session: Nanotechnology Environment, Health & Safety, Boston, MA, USA, 2011; Vol. 3, p 505.
- 20 Jarvenkyla, J. (to Plastic Pipe) US Patent 8,470,423 B2 (2013).
- 21 Jarvenkyla, J. (to Multilayer pipe) E.P. Pat. 1,708,881 A2 (2006).
- 22 Mezghani, K. Polym. Test. 2012, 31, 76.
- 23 Cruz, V. C. A.; Nobrega, M. M. S.; Silva, W. P.; Carvalho, L. H.; Lima, A. G. B. Mater. Sci. Eng. Technol. 2011, 42, 979.
- 24 Farshad, M.; Necola, A. Polym. Test. 2004, 23, 163.
- 25 Czel, G.; Czigany, T. J. Compos. Mater. 2008, 42, 2815.
- 26 Santhosh, K.; Muniraju, M.; Shivakumar, N. D.; Munusamy, R. J. Compos. Mater. 2012, 46, 1889.
- 27 Gu, H. Mater. Des. 2009, 30, 1337.
- 28 Svetlik, S. L. An Investigation in the Hygrothermal Degradation of an E–glass/vinyl–ester Composite in Humid and Immersion Environments. Dissertation. Department of Civil Engineering, University of California San Diego, CA, USA (2008).
- 29 Visco, A. M.; Calabrese, L.; Cianciafara, P. Compos. A 2008, 39, 805.
- 30 Huang, G.; Sun, H. Mater. Des. 2007, 28, 1647.
- 31 Fraga, A. N.; Alvarez, V. A.; Vazquez, A.; Osa, O. D. L. J. Compos. Mater. 2003, 37, 1553.
- 32 Chateauminois, A.; Chabert, B.; Soulier, J. P.; Vincent, L. Composites 1993, 24, 547.
- 33 Assarar, M.; Scida, D.; Mahi, A. E. L.; Poilâne, C.; Ayad, R. Mater. Des. 2011, 32, 788.
- 34 Cho, E. H.; Mounts, J. L. J. Vinyl Addit. Technol. 2007, 13, 221.
- 35 Ghani, M. A. A.; Salleh, Z.; Hyie, K. M.; Berhan, M. N.; Taib, Y. M. D.; Bakri, M. A. I. Procedia Engineering 2012, 41, 1654.
- 36 Dhakal, H. N.; Zhang, Z. Y.; Richardson, M. O. W. Compos. Sci. Technol. 2007, 67, 1674.
- 37 Zhang, J.-H.; Mao–Sheng, Z. J. Compos. Mater. 2004, 38, 779.
- 38 Crank, J.; Park, J. S. Diffusion in Polymers; Academic Press: London, UK (1968).
- 39 Dunphy Guzmán, K. A.; Taylor, M. R.; Banfield, J. F. Environmental risks of nanotechnology: National Nanotechnology Initiative funding, 2000-2004, Environ. Sci. Technol. 2006. 40 (5), 1401–1407.
- 40 Whelton, A. J.; Nguyen, T. Crit. Rev. Environ. Sci. Technol. 2013, 43, 679.
- 41 Zenko, J. R.; Wicks, W.; Jones, N. F.; Peter Pappas, S.; Wicks, D. A. Organic Coatings: Science and Technology, 3rd ed.; Wiley: Hoboken, NJ, USA, 2007.
- 42 Ranney, T. A.; Parker, L. V. Susceptibility of ABS, FEP, FRE, FRP, PTFE, and PVC Well Casing to Degradation by Chemicals, Special Report 95–1. US Army Corp of Engineers, Cold Regions Research & Engineering Laboratory, Hanover, NH, USA, January 1995.
- 43 Lafdi, K.; Fox, W.; Matzek, M.; Yildiz, E. J. Nanomater. 2008, 1.
- 44National Sanitation Foundation International Standard/American National Standards Institute. Drinking Water Treatment Units, Ann Arbor, Michigan, USA, 2007.
- 45 American Public Health Association (APHA), Water Environment Federation (WEF), and American Water Works Association (AWWA), Standard Methods for the Examination of Water and Wastewater, 20th ed.; Washington DC, USA, 2012.
- 46 Jefferson, J. D.; Farah, B.; Hempowicz, M. L.; Hsiao, K. T. Compos. B 2015, 78, 319.
- 47 Guo, J.; Jiang, Y.; Hu, X.; Xu, Z. Environ. Sci. Technol. 2012, 46, 1028.
- 48
Henze, H. Biological Wastewater Treatment: Principles, Modeling and Design; Cambridge University Press: London, UK, 2008.
10.2166/9781780401867 Google Scholar
- 49 Whelton, A. J.; Salehi, M.; Tabor, M.; Donaldson, B.; Estaba, J. J. Environ. Eng. 2013, 139, 746.
Citing Literature
August 10, 2016