Effect of ZnO nanoparticles obtained by arc discharge on thermo-mechanical properties of matrix thermoset nanocomposites
C. Medina M
Advanced Nanocomposites Research Group (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepción, 270 Edmundo Larenas, Box 160-C, Concepción, 4070409 Chile
Department of Mechanical Engineering (DIM), Faculty of Engineering, University of Concepción, 219 Edmundo Larenas, Box 160-C, Concepción, 4070409 Chile
Search for more papers by this authorD. Rojas
Advanced Nanocomposites Research Group (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepción, 270 Edmundo Larenas, Box 160-C, Concepción, 4070409 Chile
Search for more papers by this authorCorresponding Author
P. Flores
Advanced Nanocomposites Research Group (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepción, 270 Edmundo Larenas, Box 160-C, Concepción, 4070409 Chile
Department of Mechanical Engineering (DIM), Faculty of Engineering, University of Concepción, 219 Edmundo Larenas, Box 160-C, Concepción, 4070409 Chile
Correspondence to: P. Flores (E-mail: [email protected]) and M. F. Meléndrez (E-mail: [email protected])Search for more papers by this authorE. Peréz-Tijerina
Research Center for Physical and Mathematics Sciences, Faculty of Physics and Mathematics, University of Nuevo Leon, Av. Universidad s/n. Ciudad Universitaria, 66451 San Nicolás de los Garza, Nuevo León, México
Search for more papers by this authorCorresponding Author
M. F. Meléndrez
Advanced Nanocomposites Research Group (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepción, 270 Edmundo Larenas, Box 160-C, Concepción, 4070409 Chile
Correspondence to: P. Flores (E-mail: [email protected]) and M. F. Meléndrez (E-mail: [email protected])Search for more papers by this authorC. Medina M
Advanced Nanocomposites Research Group (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepción, 270 Edmundo Larenas, Box 160-C, Concepción, 4070409 Chile
Department of Mechanical Engineering (DIM), Faculty of Engineering, University of Concepción, 219 Edmundo Larenas, Box 160-C, Concepción, 4070409 Chile
Search for more papers by this authorD. Rojas
Advanced Nanocomposites Research Group (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepción, 270 Edmundo Larenas, Box 160-C, Concepción, 4070409 Chile
Search for more papers by this authorCorresponding Author
P. Flores
Advanced Nanocomposites Research Group (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepción, 270 Edmundo Larenas, Box 160-C, Concepción, 4070409 Chile
Department of Mechanical Engineering (DIM), Faculty of Engineering, University of Concepción, 219 Edmundo Larenas, Box 160-C, Concepción, 4070409 Chile
Correspondence to: P. Flores (E-mail: [email protected]) and M. F. Meléndrez (E-mail: [email protected])Search for more papers by this authorE. Peréz-Tijerina
Research Center for Physical and Mathematics Sciences, Faculty of Physics and Mathematics, University of Nuevo Leon, Av. Universidad s/n. Ciudad Universitaria, 66451 San Nicolás de los Garza, Nuevo León, México
Search for more papers by this authorCorresponding Author
M. F. Meléndrez
Advanced Nanocomposites Research Group (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepción, 270 Edmundo Larenas, Box 160-C, Concepción, 4070409 Chile
Correspondence to: P. Flores (E-mail: [email protected]) and M. F. Meléndrez (E-mail: [email protected])Search for more papers by this authorABSTRACT
Through the development of nanotechnology it has been widely studied the morphology and size control in nanopowders synthesis. However, most of these techniques are successful to synthesize nanopowders in a small scale. In this research, a large semi-industrial scale synthesis method is proposed, named continuous arc discharge in controlled atmosphere (DARC-AC). Using this technique, it is possible to directly obtain clean nanostructures (low amount of impurities) with more than 90% of particles below 100 nm. In this study, the method utilizes metallic zinc and oxygen as precursors in order to produce ZnO. The ZnO nanopowders were incorporated in a thermoset polymer (epoxy resin) to study their influence on the thermo-mechanical properties of the matrix. As main results, the mechanical properties of the nanocomposite epoxy/ZnO nanoparticles (ZnO-NPs) do not differ from the original properties of the epoxy resin. Nevertheless, thermal behavior, conductivity, and diffusivity properties of the nanocomposite are improved. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43631.
REFERENCES
- 1 Thomas, R.; Yumei, D.; Yuelong, H.; Le, Y.; Moldenaers, P.; Weimin, Y.; Czigany, T.; Thomas, S. Polymer 2008, 49, 278.
- 2 Gowda, S. K. N.; Mahendra, K. N. Bull. Korean Chem. Soc. 2006, 27, 1542.
- 3 Radoman, T. S.; Džunuzović, J. V.; Jeremić, K. B.; Grgur, B. N.; Dejan, S.; Miličević, D. S.; Popović, I. G.; Džunuzović, E. S. Mater. Des. 2014, 62, 158.
- 4 Dasari, A.; Yu, Z. Z.; Mai, Y. W. Mater. Sci. Eng. 2009, 63, 31.
- 5 Jia, Q. M.; Zheng, M.; Xu, C. Z.; Chen, H. X. Polymer Adv. Tech. 2006, 17, 168.
- 6 Sanes, J.; Carrión, F. J.; Bermúdez, M. D. Wear 2010, 268, 1295.
- 7 Chang, K. C.; Lin, H. F.; Lin, C. Y.; Kuo, T. H.; Huang, H. H.; Hsu, S. C.; Yeh, J. M.; Yang, J. C.; Yu, Y. H. J. Nanosci. Nanotechnol. 2008, 8, 3040.
- 8 Li, Y. Q.; Fu, S. Y.; Mai, Y. W. Polymer 2006, 47, 2127.
- 9 Baller, J.; Becker, N.; Ziehmer, M.; Thomassey, M.; Zielinski, B.; Muller, U.; Sanctuary, R. Polymer 2009, 50, 3211.
- 10 Naous, W.; Yu, X. Y.; Zhang, Q. X.; Naito, K.; Kagaw, Y. J. Polym. Sci. B 2006, 44, 1466.
- 11 Cayton, R.; Brotzman, R. W. MRS Symp. Proc. 2001, 8, 703.
- 12 Dhoke, S. K.; Khanna, A. S.; Mangal Sinha, T. J. Progr. Org. Coat. 2009, 64, 371.
- 13 Mostafaei, A.; Nasirpouri, F. Progr. Org. Coat. 2014, 77, 146.
- 14 Chenmin, L; Dong, L; Xianxin, L; Choi, A; Lee, PWM: Effects of surface treatments on the performance of high thermal conductive die attach adhesives (DAAs). Electronic Materials and Packaging (EMAP), 2012 14th International Conference on; 13–16 Dec. 2012, 1–5.
- 15 Ramezanzadeh, B.; Attar, M. M.; Farzam, M. Progr. Org. Coat. 2011, 72, 410.
- 16 Ramezanzadeh, B.; Attar, M. M.; Farzam, M. J. Therm. Anal. Calorim. 2011, 103, 731.
- 17 Fraga, F.; Soto, V. H.; Rodriguez-Nunez, E.; Martinez-Ageitos, J. M.; Rodriguez, V. J. Therm. Anal. Calorim. 2007, 87, 97.
- 18 Sharma, P.; Choudhary, V.; Narula, A. K. J. Therm. Anal. Calorim. 2008, 94, 805.
- 19 Germinario, L. T.; Shang, P. P. J. Therm. Anal. Calorim. 2008, 93, 207.
- 20 Shi, H.; Liu, F.; Han, E.; Wei, Y. J. Mater. Sci. Technol. 2007, 23, 551.
- 21 Karasinski, E. N.; Da Luz, M. G.; Lepienski, C. M.; Coelho, L. A. F. Thermochim. Acta 2013, 569, 167.
- 22 Lee, H.; Mall, S.; He, P.; Shi, D.; Narasimhadevara, S.; Yeo-Heung, Y.; Shanov, V.; Schulz, M. J. Compos. B 2007, 38, 58.
- 23 Sánchez, M.; Rams, J.; Campo, M.; Jiménez-Suárez, A.; Ureña, A. Compos. B 2011, 42, 638.
- 24 Hiroaki, M.; Lawrence, T. D. Polymer 2004, 45, 5163.
- 25 Shi, D.; Lian, J.; He, P.; Wang, L. M.; Xiao, F.; Yang, L.; Shulz, M. J.; Mast, D. B. Appl. Phys. Lett. 2003, 83, 5301.
- 26 Oliver, W. C.; Pharr, G. M. J. Mater. Res. 1992, 7, 1564.
- 27 Si, P. Z.; Brück, E.; Zhang, Z. D.; Tegus, O.; Zhang, W. S.; Buschow, K. H. J.; Klaasse, J. C. P. Mater. Res. Bull. 2005, 40, 29.
- 28 Si, P. Z.; Škorvánek, I.; Kováč, J.; Geng, D. Y.; Zhao, X. G.; Zhang, Z. D. J. Appl. Phys. 2003, 94, 6779.
- 29 Lee, J. G.; Li, P.; Choi, C. J.; Dong, X. L. Thin Solid Films 2010, 519, 81.
- 30 Ashkarran, A. Curr. Appl. Phys. 2010, 10, 1442.
- 31 Sönmezoglu, S.; Eskizeybek, V.; Toumiat, A.; Avcı, A. J. Alloy Comp. 2014, 586, 593.
- 32 Sun, X. M.; Chen, X.; Deng, Z. X.; Li, Y. D. Mater. Chem. Phys. 2003, 78, 99.
- 33 Melendrez, M. F.; Hanks, K.; Leonard-Deepak, F.; Solis-Pomar, F.; Martinez-Guerra, E.; Pérez-Tijerina, E.; Jose-Yacaman, M. J. Mater. Sci. 2012, 47, 2025.
- 34 Ci, L.; Bai, J. Compos. Sci. Technol. 2006, 66, 599.
- 35 Ekstrand, L.; Kristiansen, H.; Liu, J. 2005. “Characterization of Thermally Conductive Epoxy Nano Composites”, IEEE 28th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress; Wiener Neustadt, Austria, 19–23.
- 36 Fu, Y. X.; He, Z. X.; Mo, D. C.; Lu, S. S. Appl. Therm. Eng. 2014, 66, 493.
- 37 Han, Z.; Wood, J. W.; Herman, H.; Zhang, C.; Stevens, G. C. “Thermal Properties of Composites Filled With Different Fillers”, IEEE International Symposium on Electrical Insulation; Vancouver, Canada, 497–501.
Citing Literature
August 10, 2016