Evaluation of alginate dialdehyde as a suitable crosslinker on modifying porcine acellular dermal matrix: The aggregation of collagenous fibers
Shichen Zhu
College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070 China
The Sub Center (Wuhan) of National Technology and R&D of Staple Freshwater Fish Processing, Wuhan, 430070 China
Shichen Zhu and Zhipeng Gu contributed equally to this work.
Search for more papers by this authorZhipeng Gu
Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Xiaoguwei Island, Panyu District, Guangzhou, 510006 China
Shichen Zhu and Zhipeng Gu contributed equally to this work.
Search for more papers by this authorCorresponding Author
Yang Hu
College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070 China
The Sub Center (Wuhan) of National Technology and R&D of Staple Freshwater Fish Processing, Wuhan, 430070 China
Correspondence to: Y. Hu (E-mail: [email protected])Search for more papers by this authorWeihua Dan
Department of Biomass Chemistry and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065 China
Search for more papers by this authorShanbai Xiong
College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070 China
The Sub Center (Wuhan) of National Technology and R&D of Staple Freshwater Fish Processing, Wuhan, 430070 China
Search for more papers by this authorShichen Zhu
College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070 China
The Sub Center (Wuhan) of National Technology and R&D of Staple Freshwater Fish Processing, Wuhan, 430070 China
Shichen Zhu and Zhipeng Gu contributed equally to this work.
Search for more papers by this authorZhipeng Gu
Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Xiaoguwei Island, Panyu District, Guangzhou, 510006 China
Shichen Zhu and Zhipeng Gu contributed equally to this work.
Search for more papers by this authorCorresponding Author
Yang Hu
College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070 China
The Sub Center (Wuhan) of National Technology and R&D of Staple Freshwater Fish Processing, Wuhan, 430070 China
Correspondence to: Y. Hu (E-mail: [email protected])Search for more papers by this authorWeihua Dan
Department of Biomass Chemistry and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065 China
Search for more papers by this authorShanbai Xiong
College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070 China
The Sub Center (Wuhan) of National Technology and R&D of Staple Freshwater Fish Processing, Wuhan, 430070 China
Search for more papers by this authorABSTRACT
Porcine acellular dermal matrix (PADM) has been investigated widely as a natural biomaterial. However, the success of PADM has been limited by insufficient stability and poor physicochemical properties. In our work, alginate dialdehyde (ADA) with various oxidation degrees (OD = 25%, 45%, and 65%) were explored to modify PADM, while glutaraldehyde (GA), dehydrathermal treatment (DHT), and carbodiimide (EDC) were used as the control. The efficacy of ADA on modifying PADM increased along with the rising of oxidation degree. The ADA (OD = 65% and 45%) groups showed better mechanical and thermal stability, crosslink density, and resistance to enzymatic degradation than ADA (OD = 25%) and DHT + EDC group. Meanwhile, the structure of PADM crosslinked by ADA (OD = 45% and 65%) were maintained largely. Further, ADA (OD = 45%) group revealed better cytocompatibility than DHT + EDC, ADA (OD = 65%) and GA group. Considering the balance of cytocompatibility and physicochemical behavior, ADA (OD = 45%) was more suitable as a natural derived crosslinker to modify PADM in tissue engineering. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43550.
REFERENCES
- 1 Hu, Y.; Liu, L.; Dan, W.; Dan, N.; Gu, Z.; Yu, X. Int. J. Biol. Macromol. 2013, 55C, 211.
- 2 Zhang, X.; Yang, J.; Li, Y.; Liu, S.; Long, K.; Zhao, Q.; Zhang, Y.; Deng, Z.; Jin, Y. Tissue Eng. C, Meth. 2011, 17, 423.
- 3 Zhang, X.; Deng, H.; Wang, Z.; Yang, W.; Guo, Y.; Ma, D.; Yu, C.; Zhang, Y.; Jin, Y. Biomaterials 2009, 30, 2666.
- 4 Bian, D.; Chen, M.; Yu, R.; Liu, B.; Zhang, A.; Song, G. J. Hard Tissue Biol. 2014, 23, 21.
- 5 Liu, S.; Zhang, H.; Zhang, X.; Lu, W.; Huang, X.; Xie, H.; Zhou, J.; Wang, W.; Zhang, Y.; Liu, Y.; Deng, Z.; Jin, Y. Tissue Eng. A 2011, 17, 725.
- 6 Badylak, S. F. Biomaterials 2007, 28, 3587.
- 7 Gu, Z.; Xie, H.; Huang, C.; Li, L.; Yu, X. Int. J. Biol. Macromol. 2013, 58, 121.
- 8 Takitoh, T.; Bessho, M.; Hirose, M.; Ohgushi, H.; Mori, H.; Hara, M. J. Biosci. Bioeng. 2015, 119, 217.
- 9 He, L.; Theato, P. Eur. Polym. J. 2013, 49, 2986.
- 10 Aston, R.; Wimalaratne, M.; Brock, A.; Lawrie, G.; Grondahl, L. Biomacromolecules 2015, 16, 1807.
- 11 Zhang, M.; Ding, C.; Huang, L.; Chen, L.; Yang, H. Cellulose 2014, 21, 3311.
- 12 Jeong, S. I.; Krebs, M. D.; Bonino, C. A.; Khan, S. A.; Alsberg, E. Macromol. Biosci. 2010, 10, 934.
- 13 Balakrishnan, B.; Jayakrishnan, A. Biomaterials 2005, 26, 3941.
- 14 Campi, G.; Fratini, M.; Bukreeva, I.; Ciasca, G.; Burghammer, M.; Brun, F.; Tromba, G.; Mastrogiacomo, M.; Cedola, A. Acta Biomater. 2015, 23, 309.
- 15 Safandowska, M.; Pietrucha, K. Int. J. Biol. Macromol. 2013, 53, 32.
- 16 Sarker, B.; Papageorgiou, D. G.; Silva, R.; Zehnder, T.; Gul-E-Noor, F.; Bertmer, M.; Kaschta, J.; Chrissafis, K.; Detsch, R.; Boccaccini, A. R. J. Mater. Chem. B 2014, 2, 1470.
- 17 Xu, Y.; Huang, C.; Li, L.; Yu, X.; Wang, X.; Peng, H.; Gu, Z.; Wang, Y. Carbohydr. Polym. 2013, 95, 148.
- 18 Xu, Z.; Shi, L.; Yang, M.; Zhang, H.; Zhu, L. J. Mater. Chem. B 2015, 3, 3634.
- 19 He, L.; Cai, S.; Wu, B.; Mu, C.; Zhang, G.; Lin, W. J. Inorg. Biochem. 2012, 117, 124.
- 20 Hu, Y.; Liu, L.; Dan, W.; Dan, N.; Gu, Z. J. Appl. Polym. Sci. 2013, 130, 2245.
- 21 Yahyouche, A.; Zhidao, X.; Czernuszka, J. T.; Clover, A. J. P. Acta Biomater. 2011, 7, 278.
- 22 O'Brien, F. J.; Haugh, M. G.; Murphy, C. M.; McKiernan, R. C.; Altenbuchner, C. Tissue Eng. A 2011, 17, 1201.
- 23 Powell, H. M.; Drexler, J. W. Tissue Eng. C Meth. 2011, 17, 9.
- 24 Hu, Y.; Liu, L.; Dan, W. J. Soc. Leather Technol. Chem. 2013, 97, 200.
- 25 McPherson, J.; Sawamura, S.; Armstrong, R. J. Biomed. Mater. Res. 1986, 20, 93.
- 26 Fathima, N. N.; Madhan, B.; Rao, J. R.; Nair, B. U.; Ramasami, T. Int. J. Biol. Macromol. 2004, 34, 241.
- 27 Cheung, D. T.; Perelman, N.; Ko, E. C.; Nimni, M. Connect. Tissue Res. 1985, 13, 109.
- 28 Roessner, E. D.; Thier, S.; Hohenberger, P.; Schwarz, M.; Pott, P.; Dinter, D.; Smith, M. J. Biomater. Appl. 2011, 25, 413.
- 29 Gu, Z.; Zhang, X.; Yu, X.; Li, L.; Xu, Y.; Chen, Y. Mater. Sci. Eng. C Mater. Biol. Appl. 2011, 31, 1593.
- 30 Ahmadi, A.; Thorn, S. L.; Alarcon, E. I.; Kordos, M.; Padavan, D. T.; Hadizad, T.; Cron, G. O.; Beanlands, R. S.; Dasilva, J. N.; Ruel, M. Biomaterials 2015, 49, 18.
- 31 Xu, Y.; Li, L.; Wang, H.; Yu, X.; Gu, Z.; Huang, C.; Peng, H. Carbohydr. Polym. 2013, 92, 448.
- 32 Bottino, M. C.; Thomas, V.; Jose, M. V.; Dean, D. R.; Janowski, G. M. J. Biomed. Mater. Res. B: Appl. Biomater. 2010, 95B, 276.
- 33 Wang, H.; Blitterswijk, C. A. V. Biomaterials 2010, 31, 4322.
- 34 Ding, C.; Zhang, M.; Li, G. Carbohydr. Polym. 2015, 119, 194.
- 35 Vidal, C. M.; Leme, A. A.; Aguiar, T. R.; Phansalkar, R.; Nam, J. W.; Bisson, J.; Mcalpine, J. B.; Chen, S. N.; Pauli, G. F. Langmuir 2014, 30, 14887.
- 36 Gouveia, R. M.; Jones, R. R.; Hamley, L. W.; Connon, C. J. Biomater. Sci. 2014, 2, 1222.
- 37 Zhao, H.; Wang, G.; Hu, S.; Cui, J.; Ren, N.; Liu, D.; Liu, H.; Cao, C.; Wang, J.; Wang, Z. Tissue Eng. A 2011, 17, 765.
- 38 Jin, Y.; Deng, Z. H.; Wu, J. J.; Qiu, J. H.; Wang, J. L.; Tian, Y. S.; Li, Y. Tissue Eng. A 2009, 15, 3729.
- 39 Ma, J.; Sahoo, S.; Baker, A. R.; Derwin, K. A. J. Biomed. Mater. Res. B: Appl. Biomater. 2015, 103, 335.
- 40
Fratzl, P. Collagen: Structure and Mechanics; Springer Science + Business Media: New York, 2008.
10.1007/978-0-387-73906-9 Google Scholar
Citing Literature
July 5, 2016