Surface relief gratings induced by pulsed laser irradiation in low glass-transition temperature azopolysiloxanes
Victor Damian
National Institute for Laser, Plasma, and Radiation Physics, 409 Atomistilor Street, Bucharest-Magurele, Romania
Search for more papers by this authorElena Resmerita
Department of Natural and Synthetic Polymers, Gheorghe Asachi Technical University of Iasi, 73 Professor Dimitrie Mangeron Street, 700050 Iasi, Romania
Search for more papers by this authorIuliana Stoica
Petru Poni Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica Voda, 700487 Iasi, Romania
Search for more papers by this authorConstanta Ibanescu
Department of Natural and Synthetic Polymers, Gheorghe Asachi Technical University of Iasi, 73 Professor Dimitrie Mangeron Street, 700050 Iasi, Romania
Search for more papers by this authorLiviu Sacarescu
Petru Poni Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica Voda, 700487 Iasi, Romania
Search for more papers by this authorCorresponding Author
Licinio Rocha
Commission for Atomic Energy and Alternative Energies (CEA), Institute for Smart Digital Systems Saclay (LIST) Saclay, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette, Cedex, France
Correspondence to: L. Rocha (E-mail: [email protected]) and N. Hurduc (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Nicolae Hurduc
Department of Natural and Synthetic Polymers, Gheorghe Asachi Technical University of Iasi, 73 Professor Dimitrie Mangeron Street, 700050 Iasi, Romania
Correspondence to: L. Rocha (E-mail: [email protected]) and N. Hurduc (E-mail: [email protected])Search for more papers by this authorVictor Damian
National Institute for Laser, Plasma, and Radiation Physics, 409 Atomistilor Street, Bucharest-Magurele, Romania
Search for more papers by this authorElena Resmerita
Department of Natural and Synthetic Polymers, Gheorghe Asachi Technical University of Iasi, 73 Professor Dimitrie Mangeron Street, 700050 Iasi, Romania
Search for more papers by this authorIuliana Stoica
Petru Poni Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica Voda, 700487 Iasi, Romania
Search for more papers by this authorConstanta Ibanescu
Department of Natural and Synthetic Polymers, Gheorghe Asachi Technical University of Iasi, 73 Professor Dimitrie Mangeron Street, 700050 Iasi, Romania
Search for more papers by this authorLiviu Sacarescu
Petru Poni Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica Voda, 700487 Iasi, Romania
Search for more papers by this authorCorresponding Author
Licinio Rocha
Commission for Atomic Energy and Alternative Energies (CEA), Institute for Smart Digital Systems Saclay (LIST) Saclay, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette, Cedex, France
Correspondence to: L. Rocha (E-mail: [email protected]) and N. Hurduc (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Nicolae Hurduc
Department of Natural and Synthetic Polymers, Gheorghe Asachi Technical University of Iasi, 73 Professor Dimitrie Mangeron Street, 700050 Iasi, Romania
Correspondence to: L. Rocha (E-mail: [email protected]) and N. Hurduc (E-mail: [email protected])Search for more papers by this authorABSTRACT
Polymers capable of generating surface relief gratings (SRGs) were studied intensively in the last period for their applications in hot research areas, such as data storage, solar energy conversion, plasmonics, and biology. In the case of azopolymers, SRGs can be generated by two main procedures: pulsed or continuous laser irradiation. In this article, we discuss the possibility of obtaining stable SRGs with azopolysiloxanes with low glass-transition temperature values, depending on the illumination type. These studies evidenced that the polymer chemical structure had a strong influence on the SRG stability in time. For the unsubstituted azobenzene, unstable surfaces resulted, whereas for the substituted azo groups stable reliefs were obtained. A parallel discussion between the pulsed and continuous irradiation techniques and structuration mechanisms is given. The operational conditions strongly affected the relief quality when the pulsed laser irradiation method was used. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 41015.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
app41015-sup-0001-suppinfo01.pdf561.6 KB |
Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Rochon, P.; Batalla, E.; Natansohn, A. Appl. Phys. Lett. 1995, 66, 136.
- 2 Kim, D. Y.; Tripathy, S. K.; Li, L.; Kumar, J. Appl. Phys. Lett. 1995, 66, 1166.
- 3 Lee, S.; Shin, J.; Lee, Y. H.; Fan, S.; Park, J. K. Nano Lett. 2010, 10, 296.
- 4 Ambrosio, A.; Marrucci, L.; Borbone, F.; Roviello, A.; Maddalena, P. Nat. Commun. 2012, 3, 989.
- 5 Fabbri, F.; Garrot, D.; Lahlil, K.; Boilot, J. P.; Lassailly, Y.; Peretti, J. J. Phys. Chem. B 2011, 115, 1363.
- 6 Labarthet, F. L.; Buffeteau, T.; Sourisseau, C. J. Phys. Chem. B 1998, 102, 2654.
- 7 Ubukata, T.; Seki, T.; Ichimura, K. Adv. Mater. 2000, 12, 1675.
- 8 Priimagi, A.; Cattaneo, S.; Ras, R. H.; Valkama, S.; Ikkala, O.; Kauranen, M. Chem. Mater. 2005, 17, 5798.
- 9 Lee, S.; Kang, H. S.; Park, J. K. Adv. Mater. 2012, 24, 2069.
- 10 Natansohn, A.; Rochon, P. Chem. Rev. 2002, 102, 4130.
- 11 Priimagi, A.; Shevchenko, A. J. Polym. Sci. Part B: Polym. Phys. 2014, 52, 163.
- 12 Ramanujam, P. S.; Pedersen, M.; Hvilsted, S. Appl. Phys. Lett. 1999, 74, 3227.
- 13 Rodriguez, F. J.; Sanchez, C.; Villacampa, B.; Alcala, R.; Cases, R.; Millaruelo, M.; Oriol, L. Appl. Phys. Lett. 2005, 87, 201914.
- 14 Miniewicz, A.; Sahraoui, B.; Schab-Balcerzak, E.; Sobolewska, A. M.; Mitus, A. C.; Kajzar, F. Nonlinear Opt. Quantum Opt. 2006, 35, 95.
- 15 Lee, G. J.; Oh, C. H.; Lee, Y. P.; Kang, I. A.; Han, Y. K. J. Appl. Phys. 2005, 97, 093101.
- 16 Xiao, S.; Lu, X.; Lu, Q. Macromolecules 2007, 40, 7944.
- 17 Shimamura, A.; Priimagi, A.; Mamiya, J.-I.; Kinoshita, M.; Ikeda, T.; Shishido, A. J. Nonlinear Opt. Phys. Mater. 2011, 20, 405.
- 18 Yadavalli, N. S.; Santer, S. J. Appl. Phys. 2013, 113, 224304.
- 19 Barrett, C. J.; Rochon, P.; Natansohn, A. L. J. Chem. Phys. 1998, 109, 1505.
- 20 Kumar, J.; Li, L.; Jiang, X. L.; Kim, D.-Y.; Lee, T. S.; Tripathy, S. Appl. Phys. Lett. 1998, 72, 2096.
- 21 Baldus, O.; Zilker, S. J. Appl. Phys. B 2001, 72, 425.
- 22 Ambrosio, A.; Maddalena, P.; Marrucci, L. Phys. Rev. Lett. 2013, 110, 146102.
- 23 Fiorini, C.; Prudhomme, N.; de Veyrac, G.; Maurin, I.; Raimond, P.; Nunzi, J.-M. Synth. Met. 2000, 115, 121.
- 24 Pedersen, T. G.; Johansen, P. M.; Holme, N. C. R.; Ramanujam, P. S.; Hvilsted, S. Phys. Rev. Lett. 1998, 80, 89.
- 25 Toshchevikov, V. P.; Saphiannikova, M.; Heinrich, G. J. Chem. Phys. 2012, 137, 024903.
- 26 Teboul, V.; Saiddine, M.; Nunzi, J.-M.; Accary, J. B. Chem. Phys. 2011, 134, 114517.
- 27 Juan, M. L.; Plain, J.; Bachelot, R.; Royer, P.; Gray, S. K.; Wiederrecht, G. P. ACS Nano 2009, 3, 1573.
- 28 Hurduc, N.; Donose, B. C.; Macovei, A.; Paius, C. M.; Ibanescu, C.; Scutaru, D.; Hamel, M.; Branza-Nichita, N.; Rocha, L. Soft Matter 2014. DOI: 10.1039/C4SM00397G.
- 29 Sava, I.; Rezmerita, A.-M.; Lisa, G.; Damian, V.; Hurduc, N. Polymer 2008, 49, 1475.
- 30 Hurduc, N.; Enea, R.; Apostol, I.; Damian, V. J. Phys. Conf. Ser. 2008, 100, 012022.
- 31 Resmerita, A.-M.; Epure, L.; Grama, S.; Ibanescu, C.; Hurduc, N. Open Chem. Biomed. Met. J. 2009, 2, 91.
- 32 Bruder, F. K.; Hagen, R.; Rolle, T.; Weiser, M.-S.; Facke, T. Angew. Chem. Int. Ed. 2011, 50, 4552.
- 33 Baac, H. W.; Lee, J.-H.; Seo, J.-M.; Park, T. H.; Chung, H.; Lee, S.-D.; Kim, S. J. Mater. Sci. Eng. C 2004, 24, 209.
- 34 Barille, R.; Janik, R.; Kucharski, S.; Eyer, J.; Letournel, F. Colloids Surf. B 2011, 88, 63.
- 35 Hurduc, N.; Macovei, A.; Paius, C. M.; Raicu, A.; Moleavin, I.; Nichita, N.; Hamel, M.; Rocha, L. Mater. Sci. Eng. C 2013, 33, 2440.
- 36 Takashima, Y.; Hatanaka, S.; Otsubo, M.; Nakahata, M.; Kakuta, T.; Hashidzume, A.; Yamaguchi, H.; Harada, A. Nat. Commun. 2012, 3, 1270.
- 37 Murugesan, M.; Abbineni, G.; Nimmo, S. L.; Cao, B.; Mao, C. Sci. Rep. 2013, 3, 1820.
- 38 Ikawa, T.; Kato, Y.; Yamada, T.; Shiozawa, M.; Narita, M.; Mouri, M.; Hoshino, F.; Osamu, W.; Tawata, M.; Shimoyama, H. Langmuir 2010, 26, 12673.
- 39 Mouri, M.; Ikawa, T.; Narita, M.; Hoshino, F.; Osamu, W. Macromol. Biosci. 2010, 10, 612.
- 40 Mei, Y.; Saha, K.; Bogatyrev, S. R.; Yang, J.; Hook, A. L.; Kalcioglu, Z. I.; Cho, S. W.; Mitalipova, M.; Pyzocha, N.; Rojas, F.; Van Vliet, K. J.; Davies, M. C.; Alexander, M. C.; Langer, R.; Jaenisch, R.; Anderson, D. G. Nat. Mater. 2010, 9, 768.
- 41 Weng, S. N.; Fu, J. P. Biomaterials 2011, 32, 9584.
- 42 Kazmierski, K.; Hurduc, N.; Sauvet, G.; Chojnowski, J. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 1682.
- 43 Hurduc, N.; Ades, D.; Belleney, J.; Siove, A.; Sauvet, G. Macromol. Chem. Phys. 2007, 208, 2600.
- 44 Pawlik, G.; Miniewicz, A.; Sobolewska, A. M.; Mitus, A. C. EPL 2014, 105, 26002.
- 45 Schab-Balcerzak, E.; Siwy, M.; Kawalec, M.; Sobolewska, A.; Chamera, A.; Miniewicz, A. J. Phys. Chem. A 2009, 113, 8765.
- 46 Barille, R.; Janik, R.; Kucharski, S.; Eyer, J.; Letournel, F. Colloids Surf. B 2011, 88, 63.
- 47 Resmerita, A.-M.; Epure, L.; Hurduc, N.; Ades, D.; Siove, A. Macromol. Res. 2010, 18, 721.
- 48 Sava, I.; Sacarescu, L.; Stoica, I.; Apostol, I.; Damian, V.; Hurduc, N. Polym. Int. 2009, 58, 163.
- 49 Stoica, I.; Sava, I.; Epure, L.; Damian, V.; Hurduc, N. Microsc. Res. Tech. 2013, 76, 914.
- 50 Damian, V.; Apostol, I.; Hurduc, N.; Bojan, M.; Udrea, C. Proc. SPIE 2012, 8411, 841128.
- 51 Raicu Luca, A.; Moleavin, I.; Hurduc, N.; Hamell, M.; Rocha, L. Appl. Surf. Sci. 2014, 290, 172.