Design of a nanostructured electromagnetic polyaniline–keggin iron–clay composite modified electrochemical sensor for the nanomolar detection of ascorbic acid
Reena Viswan Lilly
National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, 695019 India
Search for more papers by this authorCorresponding Author
Sudha Janardhanan Devaki
National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, 695019 India
Correspondence to: S. J. Devaki (E-mail: [email protected])Search for more papers by this authorRohini Kuttiplavil Narayanan
National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, 695019 India
Search for more papers by this authorNeethu Kalloor Sadanandhan
National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, 695019 India
Search for more papers by this authorReena Viswan Lilly
National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, 695019 India
Search for more papers by this authorCorresponding Author
Sudha Janardhanan Devaki
National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, 695019 India
Correspondence to: S. J. Devaki (E-mail: [email protected])Search for more papers by this authorRohini Kuttiplavil Narayanan
National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, 695019 India
Search for more papers by this authorNeethu Kalloor Sadanandhan
National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, 695019 India
Search for more papers by this authorABSTRACT
This article demonstrates the design and fabrication of an electrochemical sensor based on a platinum electrode for ascorbic acid (AA) modified by an electromagnetic polyaniline–Keggin iron–clay (PPICS) composite. The polyaniline–polyhydroxy iron–clay composite was prepared by the polymerization of [Anilinium]+[PDPSA]− in the presence of Keggin iron intercalated clay and was characterized for its particle size, morphology, electrical conductivity, and saturation magnetization. The oxidation potential of AA was observed at +0.4 V on the bare electrode and shifted to a negative potential of −0.32 V on the modified electrode. Common possible interferences of the sample matrices were tested, and the results reveal that the PPICS-modified electrode exhibited a high selectivity and sensitivity toward AA. This unique low-cost and user-friendly sensor was validated for the nanomolar detection of AA present in real samples. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40936.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
app40936-sup-0001-suppinfo01.pdf912.5 KB |
Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Huang, J.; Virji, S.; Weiller, B. H.; Kaner, R. B. Chem.—Eur. J. 2004, 10, 1314.
- 2 Hatchett, D. W.; Josowicz, M. Chem. Rev. 2008, 108, 746.
- 3 Boroumand, F. A.; Fry, P. W.; Lidzey, D. G. Nano Lett. 2005, 5, 67.
- 4 Roman, L. S.; Inganäs, O.; Granlund, T.; Nyberg, T.; Svensson, M.; Andersson, M. R.; Hummelen, J. C. Adv. Mater. 2000, 12, 189.
- 5 Wang, J.; Chan, S.; Carlson, R. R.; Luo, Y.; Ge, G.; Ries, R. S.; Heath, J. R.; Tseng, H.-R. Nano Lett. 2004, 4, 1693.
- 6 Dong, B.; Lu, N.; Zelsmann, M.; Kehagias, N.; Fuchs, H.; Sotomayor Torres, C. M.; Chi, L. F. Adv. Funct. Mater. 2006, 16, 1937.
- 7 Eftekhari, A. Nanostructured Conductive Polymers; Wiley: Hoboken, NJ, 2011.
- 8 Krutovertsev, S. A.; Sorokin, S. I.; Zorin, A. V.; Letuchy, Y. A.; Antonova, O. Y. Sens. Actuators B 1992, 7, 492.
- 9 Saumya, V.; Prathish, K. P.; Rao, T. P. Talanta 2011, 85, 1056.
- 10 Li, X. G.; Lu, Q. F.; Huang, M. R. Small 2008, 4, 1201.
- 11 Li, X. G.; Li, A.; Huang, M. R. Chem.—Eur. J. 2008, 14, 10309.
- 12 Li, X. G.; Feng, H.; Gu, G. L.; Moloney, M. G. Anal. Chem. 2012, 84, 134.
- 13 Huang, M. R.; Ding, Y. B.; Li, X. G. Analyst 2013, 138, 3820.
- 14 Li, X. G.; Huang, M. R.; Duan, W.; Yang, Y. L. Chem. Rev. 2002, 102, 2925.
- 15 Mitchell, I. V.; Purnell, J. H. Pillared Layered Structures: Current Trends and Applications; Elsevier Applied Science: New York, 1990.
- 16 Mitchell, I. V.; Atkins, M. P. Pillared Layered Structures: Current Trends and Applications; Elsevier Applied Science: New York, 1990.
- 17 Bradley, S. M.; Kydd, R. A. J. Chem. Soc. Dalton Trans. 1993, 2407. DOI: 10.1039/DT9930002407.
- 18 Ksenofontov, V.; Gaspar, A. B.; Niel, V.; Reiman, S.; Real, J. A.; Gütlich, P. Chem.—Eur. J. 2004, 10, 1291.
- 19 Reena, V. L.; Pavithran, C.; Verma, V.; Sudha, J. D. J. Phys. Chem. B 2010, 114, 2578.
- 20 Reddy, K. R.; Lee, K.-P.; Gopalan, A. I. J. Appl. Polym. Sci. 2007, 106, 1181.
- 21 Hiemenz, P. C. Principles of Colloid and Surface Chemistry; Marcel Dekker: New York, 1986.
- 22 Sudha, J. D.; Sasikala, T. S. Polymer 2007, 48, 338.
- 23 Sudha, J. D.; Reena, V. L.; Pavithran, C. J. Polym. Sci. Part B: Polym. Phys. 2007, 45, 2664.
- 24 Sudha, J. D.; Reena, V. L. Macromol. Symp. 2007, 254, 274.
- 25 Reena, V. L.; Sudha, J. D.; Pavithran, C. J. Appl. Polym. Sci. 2009, 113, 4066.
- 26 Reena, V. L.; Sudha, J. D.; Ramakrishnan, R. J. Appl. Polym. Sci. 2013, 128, 1756.
- 27 Dumas, M.; Chaudagne, C.; Bonte, F.; Meybeck, A. C. R. Acad. Sci. Ser. III 1996, 319, 1127.
- 28 Aoki, A.; Matsue, T.; Uchida, I. Anal. Chem. 1992, 64, 44.
- 29 Uchiyama, S. Talanta 1992, 39, 1289.
- 30 Matos, R. C.; Augelli, M. A.; Pedrotti, J. J.; Lago, C. L.; Angnes, L. Electroanal. 1998, 10, 887.
- 31 Makower, A.; Eremenko, A. V.; Streffer, K.; Wollenberger, U.; Scheller, F. W. J. Chem. Technol. Biotechnol. 1996, 65, 39.
- 32 Wheeler, B. L.; Caple, G.; Henderson, A.; Francis, J.; Cantrell, K.; Vogel, S.; Grey, S.; Russell, D. J. Electrochem. Soc. 1989, 136, 2769.
- 33 Kang, Y.; Lee, M.-H.; Rhee, S. B. Synth. Met. 1992, 52, 319.
- 34 Chang, S. C.; Rawson, K.; McNeil, C. J. Biosens. Bioelectron. 2002, 17, 1015.
- 35 Lakshmi, D.; Sharma, P. S.; Prasad, B. B. Biosens. Bioelectron. 2007, 22, 3302.
- 36 Bae, Z.-U.; Park, J.-H.; Lee, S.-H.; Chang, H.-Y. J. Electroanal. Chem. 1999, 468, 85.
- 37 Zhang, L.; Wan, M. Adv. Funct. Mater. 2003, 13, 815.
- 38 Hassan, P. A.; Sawant, S. N.; Bagkar, N. C.; Yakhmi, J. V. Langmuir 2004, 20, 4874.
- 39 Murphy, P. J.; Posner, A. M.; Quirk, J. P. J. Colloid Interface Sci. 1975, 52, 229.
- 40 Chen, S.-A.; Lee, H.-T. Macromolecules 1995, 28, 2858.
- 41 Tang, J.; Jing, X.; Wang, B.; Wang, F. Synth. Met. 1988, 24, 231.
- 42 Li, X.-G.; Lü, Q.-F.; Huang, M.-R. Chem.—Eur. J. 2006, 12, 1349.
- 43 MacDiarmid, A. G.; Epstein, A. J. Synth. Met. 1995, 69, 85.
- 44 Cao, Y.; Li, S.; Xue, Z.; Guo, D. Synth. Met. 1986, 16, 305.
- 45 Schwertmann, U.; Cornell, R. M. Iron Oxides in the Laboratory: Preparation and Characterization; Wiley: Hoboken, NJ, 2008.
- 46 Neoh, K. G.; Pun, M. Y.; Kang, E. T.; Tan, K. L. Synth. Met. 1995, 73, 209.
- 47 Tandon, R. P.; Tripathy, M. R.; Arora, A. K.; Hotchandani, S. Sens. Actuators B 2006, 114, 768.
- 48 Rightor, E. G.; Tzou, M.-S.; Pinnavaia, T. J. J. Catal. 1991, 130, 29.
- 49 Long, Y.; Chen, Z.; Duvail, J. L.; Zhang, Z.; Wan, M. Phys. B: Condens. Matter 2005, 370, 121.
- 50 Nguyen, M. T.; Diaz, A. F. Adv. Mater. 1994, 6, 858.
- 51 Bidan, G.; Jarjayes, O.; Fruchart, J. M.; Hannecart, E. Adv. Mater. 1994, 6, 152.
- 52 Pruneanu, S.; Veress, E.; Marian, I.; Oniciu, L. J. Mater. Sci. 1999, 34, 2733.
- 53 Nalini, B.; Sriman Narayanan, S. Anal. Chim. Acta 2000, 405, 93.
- 54 Xu, J.-J.; Zhou, D.-M.; Chen, H.-Y. Electroanalysis 1998, 10, 713.
- 55 Kumar, S. A.; Chen, S.-M. J. Mol. Catal. A 2007, 278, 244.
- 56 Park, S.-G.; Park, J.-E.; Cho, E.-I.; Hwang, J.-H.; Ohsaka, T. Res. Chem. Intermed. 2006, 32, 595.
- 57 Lin, K. L.; Yeh, P. Y.; Chen, S. Int. J. Electrochem. Sci. 2012, 7, 12752.
- 58 Civit, L.; Nassef, H. M.; Fragoso, A.; O'Sullivan, C. K. J. Agric. Food Chem. 2008, 56, 10452.
- 59 Chairam, S.; Sriraksa, W.; Amatatongchai, M.; Somsook, E. Sensors 2011, 11, 10166.
- 60 Kong, Y.; Shan, X.; Ma, J.; Chen, M.; Chen, Z. Anal. Chim. Acta 2014, 809, 54.
- 61 Liu, Y.; Su, Z.; Zhang, Y.; Chen, L.; Gu, T.; Huang, S.; Liu, Y.; Sun, L.; Xie, Q.; Yao, S. J. Electroanal. Chem. 2013, 709, 19.
- 62 Chauhan, N.; Narang, J.; Rawal, R.; Pundir, C. S. Synth. Met. 2011, 161, 2427.
- 63 Huang, T. C.; Yeh, L. C.; Huang, H. Y.; Nian, Z. Y.; Yeh, Y. C.; Chou, Y. C.; Ming, J. Polym. Chem. 2014, 5, 630.
- 64 Kul, D.; Ghica, M. E.; Pauliukaite, R.; Brett Christopher, M. A. Talanta 2013, 111, 76.
- 65 Zakharchuk, N. F.; Meyer, B.; Henning, H.; Scholz, F.; Jaworksi, A.; Stojek, Z. J. Electroanal. Chem. 1995, 398, 23.
- 66 Castro, S. S. L.; Balbo, V. R.; Barbeira, P. J. S.; Stradiotto, N. R. Talanta 2001, 55, 249.