Role of poly(lactic acid) in the phase transition of poly(vinylidene fluoride) under uniaxial stretching
Qi Xie
Department of Polymer Processing and Engineering, College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China
Search for more papers by this authorKai Ke
Department of Polymer Processing and Engineering, College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China
Search for more papers by this authorWen-Rou Jiang
Department of Polymer Processing and Engineering, College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China
Search for more papers by this authorCorresponding Author
Wei Yang
Department of Polymer Processing and Engineering, College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China
College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China===Search for more papers by this authorZheng-Ying Liu
Department of Polymer Processing and Engineering, College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China
Search for more papers by this authorBang-Hu Xie
Department of Polymer Processing and Engineering, College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China
Search for more papers by this authorMing-Bo Yang
Department of Polymer Processing and Engineering, College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China
Search for more papers by this authorQi Xie
Department of Polymer Processing and Engineering, College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China
Search for more papers by this authorKai Ke
Department of Polymer Processing and Engineering, College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China
Search for more papers by this authorWen-Rou Jiang
Department of Polymer Processing and Engineering, College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China
Search for more papers by this authorCorresponding Author
Wei Yang
Department of Polymer Processing and Engineering, College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China
College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China===Search for more papers by this authorZheng-Ying Liu
Department of Polymer Processing and Engineering, College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China
Search for more papers by this authorBang-Hu Xie
Department of Polymer Processing and Engineering, College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China
Search for more papers by this authorMing-Bo Yang
Department of Polymer Processing and Engineering, College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China
Search for more papers by this authorAbstract
The effect of poly (lactic acid) (PLA) on the crystalline phase transition of poly (vinylidene fluoride) (PVDF) from α- to β-phase under uniaxial stretching for immiscible PVDF/ PLA blends was investigated. The typical sea-island structure in the blends was found to facilitate the necking of PVDF and the transition from α- to β-phase due to the local stress distribution during stretching. The crystalline phase transition of PVDF in the blends is temperature-dependent and is affected by the content of PLA. The highest content of β-phase, F(β), was achieved in the samples stretched at 60°C, while the effect of PLA content on the crystalline phase transition of PVDF is more complex. F(β) increases slightly when the sample with a PLA content no more than 15 wt % is stretched at 60, 80, and 100°C, and decreases sharply for the sample containing 20 wt % PLA; in addition, the sample containing 10 wt % PLA exhibits the highest F(β) no matter what the stretching temperature is. The mechanism of the crystalline phase transition of PVDF during the stretching is interpreted from energy barrier of the transition from α- to β-phase and the morphological structures in the blends. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
References
- 1 Strohmeier, W.; Frank, W. Colloid. Polym. Sci. 1982, 260, 937.
- 2 Rao, I.; Rajagopal, K. Int. J. Solids. Struct. 2001, 38, 1149.
- 3 Bao, R. Y.; Ding, Z. T.; Zhong, G. J.; Yang, W.; Xie, B. H.; Yang, M. B. Colloid. Polym. Sci. 2012, 290, 261.
- 4 Krumova, M.; Karger-Kocsis, J.; Baltá-Calleja, F.; Fakirov, S. J. Mater. Sci. 1999, 34, 2371.
- 5 Yokouchi, M.; Sakakibara, Y.; Chatani, Y.; Tadokoro, H.; Tanaka, T.; Yoda, K. Macromolecules. 1976, 9, 266.
- 6 Miri, V.; Persyn, O.; Lefebvre, J.; Seguela, R.; Stroeks, A. Polymer 2007, 48, 5080.
- 7 Kokturk, G.; Piskin, E.; Serhatkulu, T.; Cakmak, M. Polym. Eng. Sci. 2002, 42, 1619.
- 8 Zhang, X.; Schneider, K.; Liu, G.; Chen, J.; Brüning, K.; Wang, D.; Stamm, M. Polymer 2011, 52, 4141.
- 9 Lando, J.; Olf, H.; Peterlin, A. J. Polym. Sci.: Part A. 1966, 4, 941.
- 10 Matsushige, K.; Nagata, K.; Imada, S.; Takemura, T. Polymer 1980, 21, 1391.
- 11 Lund, A.; Hagstrom, B. J. Appl. Polym. Sci. 2010, 116, 2685.
- 12 Sajkiewicz, P.; Wasiak, A.; Gocłowski, Z. Eur. Polym. J. 1999, 35, 423.
- 13 Salimi, A.; Yousefi, A. Polym. Test. 2003, 22, 699.
- 14 Mohammadi, B.; Yousefi, A. A.; Bellah, S. M. Polym. Test. 2007, 26, 42.
- 15 Sencadas, V.; Gregorio, R. Jr; Lanceros-Méndez, S. J. Macromol. Sci.: Part B. 2009, 48, 514.
- 16 Ke, K.; Wang, Y.; Zhang, K.; Luo, Y.; Yang, W.; Xie, B. H.; Yang, M. B. J. Appl. Polym. Sci. 2012, 125, 49.
- 17 Lu, F.; Hsu, S. Polymer. 1984, 25, 1247.
- 18 Gregorio, R.; Borges, D. S. Polymer 2008, 49, 4009.
- 19 Buckley, J.; Cebe, P.; Cherdack, D.; Crawford, J.; Ince, B. S.; Jenkins, M.; Pan, J.; Reveley, M.; Washington, N.; Wolchover, N. Polymer 2006, 47, 2411.
- 20 Tang, X. G.; Hou, M.; Ge, L.; Zou, J.; Truss, R.; Yang, W.; Yang, M. B.; Zhu, Z. H.; Bao, R. Y. J. Appl. Polym. Sci. 2012, 125, 592.
- 21 Li, Y.; Kaito, A.; Horiuchi, S. Macromolecules 2004, 37, 2119.
- 22 Li, Y.; Iwakura, Y.; Shimizu, H. Macromolecules 2008, 41, 3396.
- 23 Li, Y.; Shimizu, H.; Furumichi, T.; Takahashi, Y.; Furukawa, T. J. Polym. Sci.: Polym. Phys. 2007, 45, 2707.
- 24 Gregorio, R.Jr. Nociti, N., J. Phys. D.: Appl. Phys. 1995, 28, 432.
- 25 Madhavan Nampoothiri, K.; Nair, N. R.; John, R. P. Bioresource. Technol. 2010, 101, 8493.
- 26 Harrison, J.; Ounaies, Z. Polymers, Piezoelectric. In Encyclopedia of Smart Materials; M. Schwartz; Wiley: New York, 2002, 162.
- 27 Fukada, E. IEEE T Dielect El In 2006, 13, 1110.
- 28
Ikada, Y.;
Shikinami, Y.;
Hara, Y.;
Tagawa, M.;
Fukada, E.
J. Biomed. Mater. Res.
1996,
30,
553.
10.1002/(SICI)1097-4636(199604)30:4<553::AID-JBM14>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 29 Kaito, A.; Iwakura, Y.; Li, Y.; Shimizu, H. J. Polym. Sci.: Polym. Phys. 2008, 46, 1376.
- 30 Chen, H. C.; Tsai, C. H.; Yang, M. C. J. Polym. Res. 2011, 18, 319.
- 31 Lu, X.; Weiss, R. Macromolecules 1992, 25, 3242.
- 32 Kapnistos, M.; Hinrichs, A.; Vlassopoulos, D.; Anastasiadis, S.; Stammer, A.; Wolf, B. Macromolecules 1996, 29, 7155.
- 33 Zhang, Z.; Zhang, H.; Yang, Y.; Vinckier, I.; Laun, H. Macromolecules 2001, 34, 1416.
- 34 Niu, Y.; Yang, L.; Shimizu, K.; Pathak, J. A.; Wang, H.; Wang, Z. J. Phys. Chem. B. 2009, 113, 8820.
- 35 Chopra, D.; Kontopoulou, M.; Vlassopoulos, D.; Hatzikiriakos, S. G. Rheol. Acta. 2002, 41, 10.
- 36 Wu, D.; Zhang, Y.; Zhang, M.; Zhou, W. Eur. Polym. J. 2008, 44, 2171.
- 37 Garlotta, D. J. Polym. Environ. 2001, 9, 63.
- 38 Gregorio, R.; Ueno, E. J. Mater. Sci. 1999, 34, 4489.
- 39 Esterly, D. M.; Love, B. J. J. Polym. Sci.: Polym. Phys. 2004, 42, 91.
- 40 Almasri, A. Master of Science Thesis: Texas A&M University. 2006.
- 41 Lai, W.; J. Phys. Chem. B. 2011, 115, 11029.
- 42 Asadinezhad, A.; Yavari, A.; Jafari, S.; Khonakdar, H.; Böhme, F.; Hässler, R. Polym. Bull. 2005, 54, 205.
- 43 Dai, S.; Ye, L. Polym. Adv. Technol. 2008, 19, 1069.
- 44 Atanase, L. I.; Glaied, O.; Riess, G. Polymer 2011, 52, 3074.
- 45 Li, Y.; Wang, Y.; Liu, L.; Han, L.; Xiang, F.; Zhou, Z. J. Polym. Sci.: Polym. Phys. 2009, 47, 326.
- 46 Ince-Gunduz, B. S.; Alpern, R.; Amare, D.; Crawford, J.; Dolan, B.; Jones, S.; Kobylarz, R.; Reveley, M.; Cebe, P. Polymer 2010, 51, 1485.
- 47 Gregorio, R.; Cestari, M. J. Polym. Sci.: Polym. Phys. 1994, 32, 859.
- 48 Zhao, X.; Chen, S.; Zhang, J.; Zhang, W.; Wang, X. J. Cryst. Growth 2011, 328, 74.