Influence of nanofillers on the sorption and diffusion characteristics of the solvent in vulcanized hydrogenated nitrile rubber nanocomposite
Anusuya Choudhury
Rubber Technology Centre, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India
Search for more papers by this authorCorresponding Author
Anil K. Bhowmick
Rubber Technology Centre, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India
Indian Institute of Technology, Patna 800013, India===Search for more papers by this authorMatthias Soddemann
Lanxess Deutschland GmbH, 41538 Dormagen, Germany
Search for more papers by this authorAnusuya Choudhury
Rubber Technology Centre, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India
Search for more papers by this authorCorresponding Author
Anil K. Bhowmick
Rubber Technology Centre, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India
Indian Institute of Technology, Patna 800013, India===Search for more papers by this authorMatthias Soddemann
Lanxess Deutschland GmbH, 41538 Dormagen, Germany
Search for more papers by this authorAbstract
The impact of nanofillers on the swelling characteristics of hydrogenated nitrile butadiene rubber (HNBR)–clay nanocomposites was thoroughly investigated. The nanocomposites exhibited a dramatic decrease in the solvent uptake compared to the unfilled HNBR even at very low filler loadings because of the molecular dispersion of the organically modified montmorillonite and sepiolite and strong interaction between the HNBR and clays. The dispersion of the clay layers was verified by transmission electron microscopy. In addition, the clay content was found to influence the solvent uptake properties of the HNBR–clay nanocomposites. The diffusion and sorption behavior of chloroform in the HNBR–clay nanocomposites at different loadings was studied by a conventional weight gain method. The diffusion results were analyzed in terms of the simple Fickian model. Finally, Arrhenius and thermodynamic parameters were evaluated from these diffusion data. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
REFERENCES
- 1 Shach, D.; Fytas, G.; Vlassopolelos, D. Langmuir 2005, 21, 19.
- 2 Jordan, J. M. J. Phys. Colloid Chem. 1950, 53, 245.
- 3 Joley, S. Chem. Mater. 2002, 14, 4202.
- 4 Tarapow, J. A.; Bernai, C. R.; Alvarez, V. A. J. Appl. Polym. Sci. 2009, 111, 768.
- 5 Maiti, M.; Bhattacharya, M.; Bhowmick, A. K.; Rubber Chem. Technol. 2008, 81, 384.
- 6 Koh, H. C.; Park, J. S.; Jeong, M. A.; Hwang, H. Y.; Hong, Y. T.; Ha, S. Y.; Nam, S. Y. Desalination 2008, 233, 201.
- 7 Lee, J. H.; Jung, D.; Hong, C. E.; Rhee, K. Y.; Advani, S. G. Compos. Sci. Technol. 2005, 65, 1996.
- 8 Wang, S.; Zhang, Y.; Ren, W.; Zhang, Y.; Lin, H. Polym. Test. 2005, 24, 766.
- 9 Chaudhary, D. S.; Prasad, R.; Gupta, R. K.; Bhattacharya, S. N. Thermochim. Acta 2005, 433, 187.
- 10 Okamoto, M.; Morita, S.; Kotaka, T. Polymer 2001, 42, 2685.
- 11 Zhang, J.; Jiang, D. D.; Wilkie, C. A. Polym. Degrad. Stab. 2006, 91, 358.
- 12 Liang, Y.; Wang, Y.; Wu, Y.; Lu, Y.; Zhang, H.; Zhang, L. Polym. Test. 2005, 24, 12.
- 13 Messermith, P. B.; Giannelis, E. P. J. Polym. Sci. Part A: Polym. Chem. 1995, 33, 1049.
- 14 Picard, E.; Vermogen, A.; Gérard, J. F.; Espuche, E. J. Membr. Sci. 2007, 292, 133.
- 15 Gatos, K. G.; Szazdi, L.; Pukanszky, B.; Karger-Kocsis, J. Macromol. Rapid Commun. 2005, 26, 915.
- 16 Gatos, K. G.; Sawanis, N. S.; Apostolov, A. A.; Thomann, R.; Karger-Kocsis, J. Macromol. Mater. Eng. 2004, 289, 1079.
- 17 Herrmann, W.; Uhl, C.; Heinrich, G.; Jehnichen, D. Polym. Bull. 2006, 57, 395.
- 18 Choudhury, A.; Ong, C.; Bhowmick, A. K. Polymer 2009, 50, 201.
- 19 Choudhury, A.; Ong, C.; Bhowmick, A. K. J. Appl. Polym. Sci. 2010, 116, 1428.
- 20 Sadhu, S.; Bhowmick, A. K. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 1573.
- 21 Sadhu, S.; Bhowmick, A. K. Rubber Chem. Technol. 2005, 78, 321.
- 22 Cassidy, P. E.; Aminabhavi, T. M. Rubber Chem. Technol. 1983, 56, 594.
- 23 Harogoppad, S. B.; Aminabhavi, T. M.; Macromolecules 1991, 24, 2598.
- 24 Khinnavar, R. D.; Aminabhavi, T. M. J. Appl. Polym. Sci. 1991, 42, 2321.
- 25 Proikakis, C. S.; Mamouzelos, N. J.; Tarantili, P. A.; Andreopoulos, A. G. Polym. Degrad. Stab. 2006, 91, 614.
- 26 Gopakumar, S.; Gopinathan Nair, M. R. Polymer 2005, 46, 10419.
- 27 Azaar, K.; Rosca, I. D.; Vergnaud, J. M. Polymer 2002, 43, 4261.
- 28 Kader, M. A.; Bhowmick, A. K. Polym. Degrad. Stab. 2003, 79, 283.
- 29 Mathai, A. E.; Singh, R. P.; Thomas, S. J. Membr. Sci. 2002, 202, 35.
- 30 El-Tantawy, F. Polym. Degrad. Stab. 2001, 73, 289.
- 31 Erdal, S.; Bahar, I.; Erman, B.; Polymer 1998, 39, 2035.
- 32 Sen Majumder, P.; Majali, A. B.; Tikku, V. K.; Bhowmick, A. K. J. Appl. Polym. Sci. 2000, 75, 784.
- 33 Brunside, S. D.; Giannelis, E. P. Chem. Mater. 1995, 7, 1597.
- 34 Jiang, T.; Wang, Y.; Yeh, J.; Fan, Z. Eur. Polym. J. 2005, 41, 459.
- 35 Chen, T.-K; Tien, Y.-I.; Wei, K.-H. Polymer 2000, 41, 1345.
- 36 Kim, B. K.; Seo, J. W.; Jeong, H. M. Eur. Polym. J. 2003, 39, 85.
- 37 Wang, Z.; Pinnavaia, T. J. Chem. Mater. 1998, 10, 3769.
- 38 Alex, R.; Nah, C. J. Appl. Polym. Sci. 2006, 102, 3277.
- 39 Valsecchi, R.; Torlaj, L.; Turri, S.; Tonelli, C.; Levi, M. J. Appl. Polym. Sci. 2011, 119, 3476.
- 40 Huang, J.-C.; Zhu, Z.-K.; Yin, J.; Qian, X.-F.; Sun, Y.-Y. Polymer 2001, 42, 873.
- 41 Kraus, G. J. J. Appl. Polym. Sci. 1998, 8, 1179.