The effect of selective location of carbon nanotubes on electrical properties of thermoplastic vulcanizates
Yilei Zhu
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
The Plastic Technology Center, Sinopec Beijing Research Institute of Chemical Industry, Beijing, China
Search for more papers by this authorXiaohong Zhang
The Plastic Technology Center, Sinopec Beijing Research Institute of Chemical Industry, Beijing, China
Search for more papers by this authorZhihai Song
The Plastic Technology Center, Sinopec Beijing Research Institute of Chemical Industry, Beijing, China
Search for more papers by this authorGuicun Qi
The Plastic Technology Center, Sinopec Beijing Research Institute of Chemical Industry, Beijing, China
Search for more papers by this authorXiang Wang
The Plastic Technology Center, Sinopec Beijing Research Institute of Chemical Industry, Beijing, China
Search for more papers by this authorBinghai Li
The Plastic Technology Center, Sinopec Beijing Research Institute of Chemical Industry, Beijing, China
Search for more papers by this authorHaosheng Wang
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
The Plastic Technology Center, Sinopec Beijing Research Institute of Chemical Industry, Beijing, China
Search for more papers by this authorCorresponding Author
Jinliang Qiao
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
The Plastic Technology Center, Sinopec Beijing Research Institute of Chemical Industry, Beijing, China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China===Search for more papers by this authorYilei Zhu
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
The Plastic Technology Center, Sinopec Beijing Research Institute of Chemical Industry, Beijing, China
Search for more papers by this authorXiaohong Zhang
The Plastic Technology Center, Sinopec Beijing Research Institute of Chemical Industry, Beijing, China
Search for more papers by this authorZhihai Song
The Plastic Technology Center, Sinopec Beijing Research Institute of Chemical Industry, Beijing, China
Search for more papers by this authorGuicun Qi
The Plastic Technology Center, Sinopec Beijing Research Institute of Chemical Industry, Beijing, China
Search for more papers by this authorXiang Wang
The Plastic Technology Center, Sinopec Beijing Research Institute of Chemical Industry, Beijing, China
Search for more papers by this authorBinghai Li
The Plastic Technology Center, Sinopec Beijing Research Institute of Chemical Industry, Beijing, China
Search for more papers by this authorHaosheng Wang
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
The Plastic Technology Center, Sinopec Beijing Research Institute of Chemical Industry, Beijing, China
Search for more papers by this authorCorresponding Author
Jinliang Qiao
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
The Plastic Technology Center, Sinopec Beijing Research Institute of Chemical Industry, Beijing, China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China===Search for more papers by this authorAbstract
Three types of conductive thermoplastic vulcanizates (TPVs) were prepared by blending polypropylene (PP), carbon nanotubes (CNT), and carboxylic acrylonitrile butadiene ultrafine full-vulcanized powdered rubber (xNBR-UFPR). The CNT locations were different in these three types of TPVs, i.e., CNTs were localized in PP matrix, in the xNBR-UFPR phase, or mainly in the interface. It had been found that TPV with CNTs localized mainly in the interface had the lowest conductive percolation threshold among these three types of TPVs. The volume resistivity of the TPV with 2 phr CNTs was as small as 220 Ω•cm. Moreover, the conductive TPV possessed good mechanical properties. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
Reference
- 1 Ailish, O. H.; Fergal, O. M.; Peter, M. J. Appl. Phys., 2008, 104, 1.
- 2 Al-Saleh, M. H.; Sundararaj, U. Carbon, 2009, 47, 2.
- 3 Katbab, A. A., Nazockdast H., and Bazgir S., J. Appl. Polym. Sci., 2000, 75, 1127.
- 4 Tian, H.; Tian, M.; Zou, H.; Dang, Z.; Zhang, L. J. Appl. Polym. Sci., 2010, 117, 691.
- 5 Baudouin, A.-C.; Autl, D.; Tao, F. F.; Devaux, J.; Bailly, C. Polymer 2011, 52, 149.
- 6 Goldel, A.; Kasaliwal, G.; Potschke, P. Macromol. Rapid. Commun., 2009, 30, 423.
- 7 Wu, D.; Lin, D.; Zhang, J.; Zhou, W.; Zhang, M.; Zhang, Y.; Wang, D.; Lin, B. Macromol. Chem. Phys., 2011, 212, 613.
- 8 Wu, D.; Sun, Y.; Lin, D.; Zhou, W. Zhang, M.; Yuan, L. Macromol. Chem. Phys. 2011, 212, 1700.
- 9 Gubbels, F.; Blacher, S.; Vanlathem, E.; Jerome, R.; Deltour, R.; Brouers, F.; Teyssie, Ph. Macromolecules, 1995, 28, 1559.
- 10 Feng, J. Y.; Chan, C. M.; Li, J. X. Polym. Eng. Sci., 2003, 43, 1058.
- 11 Zhang, X. H.; Wei, G. S.; Liu, Y. Q.; Gao, J. M.; Zhu, Y. C.; Song, Z. H.; Huang, F.; Zhang, M. L.; Qiao, J. L. Macromol. Symp., 2003, 193, 261.
- 12 Xu, X. D., Qiao, J. L., Yin, J. H. J. Polym. Sci. B. 2004, 42, 1042.
- 13 Xinqing, S.; Jinliang, Q.; Youqing, H.; Yiqun, L.; Xiaohong, Z.; Jianming, G.; Banghui, T.; Zhihai, S. Acta Polym. Sin., 2005, 1, 142.
- 14 Wang, H. S.; Zhang, X. H.; Zhu, Y. L.; Song, Z. H.; Qiao, J. L. Mater. Lett. 2011, 65, 2055.
- 15 Gui, H.; Zhang, X.; Dong, W.; Wang, Q.; Gao, J.; Song, Z.; Lai, J.; Liu, Y.; Huang, F.; Qiao, J. Polymer 2007, 48, 2537.
- 16 Wang, H. S.; Zhang, X. H.; Zhu, Y. L.; Song, Z. H.; Qiao, J. L. Chin. J. Polym. Sci., 2012, 30, 138.
- 17 Qiao, J.; Wei, G.; Zhang, X.; Zhang, S.; Gao, J.; Zhang, W.; Liu, Y.; Li, J.; Zhang, F.; Zhai, R.; Shao, J.; Yan, K.; Yin, H. US Patent US 6, 423, 760 B1, 2002.
- 18 Barber, A. H.; Cohen, S. R.; Wagner, H. D. Phys. Rev. Lett. 2004, 92, 1.
- 19 Fenouillot, F.; Cassagnau, P.; Majeste, J.-C. Polymer 2009, 50, 1333.