Effect of multiwall carbon nanotubes on thermomechanical and electrical properties of poly(trimethylene terephthalate)
Anju Gupta
Centre for Polymer Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
Search for more papers by this authorCorresponding Author
Veena Choudhary
Centre for Polymer Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
Centre for Polymer Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India===Search for more papers by this authorAnju Gupta
Centre for Polymer Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
Search for more papers by this authorCorresponding Author
Veena Choudhary
Centre for Polymer Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
Centre for Polymer Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India===Search for more papers by this authorAbstract
Multiwalled carbon nanotubes (MWCNTs) were synthesized using chemical vapor deposition and poly(trimethylene terephthalate) (PTT)/MWCNT composites with varying amounts of MWCNTs were prepared by melt compounding using DSM micro-compounder. Morphological characterization by SEM and TEM showed uniform dispersion of MWCNTs in PTT matrix upto 2% (w/w) MWCNT loading. Incorporation of MWCNTs showed no effect on percent crystallinity but affected the crystallite dimensions and increased the crystallization temperature. Dynamic mechanical characterization of composites showed an increase in storage modulus of PTT upon incorporation of MWCNTs above glass transition temperature. The electrical conductivity of PTT/MWCNT composites increased upon incorporation of MWCNTs and percolation threshold concentration was obtained at a loading of MWCNTs in the range of 1–1.5% (w/w). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
References
- 1 Ouchi, I.; Hosoi, M.; Shimotsuma, S. J Appl Polym Sci 1977, 21, 345.
- 2 Chuah, H.; Scheirs, J.; Long, T. Modern Polyester; Wiley: New York, 2003.
- 3 Dangseeyun, N.; Srimoaon, P.; Supaphol, P.; Nithitanakul, M. Thermochimica Acta 2004, 409, 63.
- 4 Huang, J. M.; Chang, F. C. J Polym Sci Part B Polym Phys 2000, 38, 934.
- 5 Hone, J.; Lianguno, M. C.; Nemes, N. M.; Johnson, A. T.; Fischer, J. E.; Walters, D. A.; Casavant, M. J.; Schimidt, J.; Smalley, R. E. Appl Phys Lett 2000, 77, 666.
- 6 Rouff, R. F.; Lorents, D. C. Carbon 1995, 33, 925.
- 7 Anand, A. K.; Joseph, R.; Agarwal, U. S.; Nisal, A. J Euro Polym 2007, 43, 2279.
- 8 Shiaun, M.; Kikurchi, R.; Ohki, Y.; Yoshimura, S. Carbon 2007, 35, 195.
- 9 Ounaies, Z.; Park, C.; Wise, K. E.; Siochi, E. J.; Harrison, J. S. Compos Sci Technol 2003, 63, 1637.
- 10 Nogales, A.; Broza, G.; Roslaniec, Z.; Schulte, K.; Sics, I.; Hsiao, B. S.; Sanz, A.; Garcia-Gutierrez, M. C.; Rueda, D. R.; Domingo, C.; Ezquerra, T. A. Macromolecules 2004, 37, 7669.
- 11 Steinert, B. W.; Dean, D. R. Polymer 2009, 50, 898.
- 12 Sanchez, C.; Julian, B.; Belleville, P.; Popall, M. J Mater Chem 2005, 15, 3559.
- 13 Hua, N.; Masuda, Z.; Yamamoto, G.; Fukunaga, H.; Hashida, T.; Qui, J. Compos A 2008, 39, 893.
- 14 Camargo, P. H. C.; Satnarayana, K. G.; Wypych, F. Mater Res 2009, 12, 1.
- 15 Xu, Y.; Jia, H.; Piao, J.; Ye, S.; Haung, J. J Mater Sci 2008, 43, 417.
- 16 Wu, C. S. J Appl Polym Sci 2009, 114, 1633.
- 17 Gupta, A.; Choudhary, V. Macromol Symp 2010, 290, 56.
- 18 Chauh, H. H.; Lin-Vien, D.; Soni, U. Polymer 2001, 42, 7139.
- 19 Mathur, R. B.; Chatterjee S.; Singh, B. P. Compos Sci Tech 2008, 68, 1608.
- 20
Solomon, O. F.;
Ciuta, I. Z.
J Appl Polym Sci
1962,
6,
6683.
10.1002/app.1962.070062414 Google Scholar
- 21 Kuwahara, N. J Polym Sci A 1963, 7, 2395.
- 22 Huxtable, S. T.; Cahill, D. G.; Shenogin, S.; Xue, L.; Ozisik, R.; Barone, P.; Usrey, M.; Strano, M. S.; Siddons, G.; Shim, M.; Keblinski, P. Nat Mater 2003, 2, 731.
- 23 Pyda, M.; Boller, A.; Grebowicz, J.; Chuah, H.; Lebedev, B V.; Wunderlich, B. J Polym Sci Part B: Polym Phys 1998, 36, 2499.
- 24 Wang, Y.; Lu, J.; Shen, D. Y. Polymer 2000, 32, 560.
- 25 Kong, Y.; Hay, J. N. Polymer 2003, 46, 623.
- 26 Wunderlich, B. Macromolecular Physics; Academic Press: New York, 1968.
- 27 Wu, D. F.; Wu, L.; Yu, G. C.; Xu, B.; Zhang, M. Polym Eng Sci 2008, 48, 1057.
- 28 Geil, P. H. Polymer Single Crystal; Interscience: New York, 1963.
- 29 Murthy, N. S.; Minor, H. Polymer 1990, 31, 996.
- 30 Camponeschi, E.; Vance, R.; Al-Haik, M.; Garmestani, H.; Tannenbaum, R. Carbon 2037 2007, 45.
- 31 Liu, L.; Gu, A.; Fang, Z.; Tong, L.; Xu, Z. Compos A 2007, 38, 1957.
- 32 Schadler, L. S.; Giannaris, S. C.; Ajayan, P. M. J Appl Phys Lett 1998, 73, 3842.
- 33 Ajayan, P. M.; Schadler, L. S.; Giannaris, C.; Rubio, A. Adv Mater 2000, 12, 750.
- 34 Liu, T. X.; Phang, I. Y.; Shen, L.; Chow, S. Y.; Zhang, W. D. Macromolecules 2004, 37, 7214.
- 35 Sung, Y. T.; Kum, C. K.; Lee, H. S.; Byon, N. S.; Yoon, H. G.; Kim, W. N. Polymer 2005, 46, 5656.
- 36 Bryning, M. B.; Islam, M. F.; Kikkawa, J. M.; Yodh, A. G. Adv Mater 2005, 17, 1186.
- 37 Hu, G.; Zhao, C.; Zhang, S.; Yang, M.; Wang, Z. Polymer 2006, 47, 480.
- 38 Ounaies, Z.; Park, C.; Watson, K. A.; Crooks, R. E., Jr.; Lowther, S. E.; Connel, J. W.; Siochi, E. J.; Harrison, J. S. Chem Phys Lett 2002, 364, 303.