Capacitance properties of graphite oxide/poly(3,4-ethylene dioxythiophene) composites
Yongqin Han
College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Search for more papers by this authorBing Ding
College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Search for more papers by this authorHao Tong
College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Search for more papers by this authorCorresponding Author
Xiaogang Zhang
College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China===Search for more papers by this authorYongqin Han
College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Search for more papers by this authorBing Ding
College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Search for more papers by this authorHao Tong
College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Search for more papers by this authorCorresponding Author
Xiaogang Zhang
College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China===Search for more papers by this authorAbstract
Poly(3,4-ethylene dioxythiophene) (PEDOT) and graphite oxide (GO)/PEDOT composites (GPTs) doped with poly(sodium styrene sulfate) (PSS) were synthesized by in situ polymerization in aqueous media. The electrochemical capacitance performances of GO, PEDOT–PSS, and GPTs as electrode materials were investigated. The GPTs had a higher specific capacitance of 108 F/g than either composite constituent (11 F/g for GO and 87 F/g for PEDOT–PSS); this was attributable to its high electrical conductivity and the layer-within/on-layer composite structure. Such an increase demonstrated that the synergistic combination of GO and PEDOT–PSS had advantages over the sum of the individual components. On the basis of cycle-life tests, the capacitance retention of about 78% for the GPTs compared with that of 66% for PEDOT–PSS after 1200 cycles suggested a high cycle stability of the GPTs and its potential as an electrode material for supercapacitor applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
References
- 1 Conway, B. E. Electrochemical Supercapacitors, Scientific Fundamentals and Technological Application; Kluwer Academic: New York, 1999.
- 2 Conway, B. E. J Electrochem Soc 1991, 138, 1539.
- 3 Burke, A. J Power Sources 2000, 91, 37.
- 4 Simon, P.; Gogotsi, Y. Nat Mater 2008, 7, 845.
- 5 Pandolofo, A. G.; Hollenkamp, A. F. J Power Sources 2008, 157, 11.
- 6
Carbon Nanomaterials;
Y. Gogotsi, Ed.;
CRC:
Boca Raton, FL,
2006.
10.1201/9781420009378 Google Scholar
- 7 Portet, C.; Chmiola, J.; Gogotsi, Y.; Park, S.; Lian, K. Electrochim Acta 2008, 53, 675.
- 8 Yang, C. M. J Am Chem Soc 2007, 129, 20.
- 9 Patake, V. D.; Pawar, S. M.; Shinde, V. R.; Gujar, T. P.; Lokhande, C. D. Curr Appl Phys 2010, 10, 99.
- 10 Ragupathy, P.; Park, D. H.; Campet, G.; Vasan, H. N.; Hwang, S. J.; Choy, J. H.; Munichandraiah, N. J Phys Chem C 2009, 113, 6303.
- 11 Patake, V. D.; Lokhande, C. D.; Joo, O. S. Appl Surf Sci 2009, 255, 4192.
- 12 Patake, V. D.; Lokhande, C. D. Appl Surf Sci 2008, 254, 2820.
- 13 Lee, S.; Cho, M. S.; Nam, J. D.; Lee, Y. J Nanosci Nanotechnol 2008, 8, 5036.
- 14 Amarnath, C. A.; Chang, J. H.; Kim, D.; Mane, R. S.; Han, S. H.; Sohn, D. Mater Chem Phys 2009, 113, 14.
- 15 Zang, J. F.; Bao, S. J.; Li, C. M.; Bian, H. J.; Cui, X. Q.; Bao, Q. L.; Sun, C. Q.; Guo, J.; Lian, K. R. J Phys Chem C 2008, 112, 14843.
- 16 Ismail, Y. A.; Chang, J.; Shin, S. R.; Mane, R. S.; Han, S. H.; Kim, S. J. J Electrochem Soc A 2009, 156, 313.
- 17 He, H.; Klinowski, J.; Forster, M.; Lerf, A. Chem Phys Lett 1998, 287, 53.
- 18 Lerf, A.; He, H.; Riedl, T.; Forster, M.; Klinowski, J. Solid State Ionics 1997, 101, 857.
- 19 Lerf, A.; He, H.; Forster, M.; Klinowski, J. J Phys Chem B 1998, 102, 4477.
- 20 Hontoria-Lucas, C.; Lopez-Peinado, A. J.; Lopez-Gonzalez, J. D.; Rojas-Cervantes, M. L.; Martin-Aranda, R. M. Carbon 1995, 33, 1585.
- 21 Yang, S.; Kim, I. J.; Jeon, M. J.; Kim, K.; Moon, S. I.; Kim, H. S.; An, K. H. J Ind Eng Chem 2008, 14, 365.
- 22 Jeong, H. K.; Jin, M.; Ra, E. J.; Sheem, K. Y.; Han, G. H.; Arepalli, S.; Lee, Y. H. ACS Nano 2010, 4, 1162.
- 23 Tien, C. P.; Teng, H. J Power Sources 2010, 195, 2414.
- 24 Muthulakshmi, B.; Kalpana, D.; Pitchumani, S.; Renganathan, N. G. J Power Sources 2006, 158, 1533.
- 25 Kim, J. H.; Lee, Y. S.; Sharma, A. K.; Liu, C. G. Electrochim Acta 2006, 52, 1727.
- 26 Zhou, Y.; Qin, Z. Y.; Li, L.; Zhang, Y.; Wei, Y. L.; Wang, L. F.; Zhu, M. F. Electrochim Acta 2010, 55, 3904.
- 27 Pei, Q.; Zuccarello, G.; Ahlskog, M.; Inganas, O. Polymer 1994, 35, 1347.
- 28 Groenendaal, L.; Jonas, G.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Adv Mater 2000, 12, 481.
- 29 Patra, S.; Munichandraiah, N. J Appl Polym Sci 2007, 106, 1160.
- 30 Ryu, K. S.; Lee, Y. G.; Hong, Y. S.; Park, Y. J.; Wu, X. L.; Kim, K. M.; Kang, M. G, Park, N. G. Electrochim Acta 2004, 50, 843.
- 31 Liu, K. K.; Hu, Z. L.; Xue, R.; Zhang, L.; Zhu, J. J. J Power Sources 2008, 179, 858.
- 32 Sharma, R. K.; Zhai, L. Electrochim Acta 2009, 54, 7148.
- 33 Hummers, W. S.; Offeman, R. E. J Am Chem Soc 1958, 80, 1339.
- 34 Han, Y. Q.; Lu, Y. Compos Sci Technol 2009, 69, 1231.
- 35 Titelman, G. I.; Gelman, V.; Bron, S.; Khalfin, R. L.; Cohen, Y.; Bianco-Peled, H. Carbon 2005, 43, 641.
- 36 Kvarnström, C.; Neugebauer, H.; Blomquist, S.; Ahonen, H. J.; Kankare, J.; Ivaska, A. Electrochim Acta 1999, 44, 2739.
- 37 Garreau, S.; Louarn, G.; Buisson, J. P.; Froyer, G.; Lefrant, S. Macromolecules 1999, 32, 6807.
- 38 Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Chem Mater 1999, 3, 771.
- 39 Niua, L.; Kvarnström, C.; Fröbergb, K.; Ivaska, A. Synth Met 2001, 122, 425.
- 40 Sasaki, T.; Watanable, M. J Am Chem Soc 2000, 77, 2201.
- 41 Kuo, C. W.; Huang, L. M.; Wen, T. C.; Gopalan, A. J Power Sources 2006, 160, 65.
- 42 Cao, L.; Lu, M.; Li, H. L. J Electrochem Soc A 2005, 5, 871.
- 43 Nian, J. N.; Teng, H. J Phys Chem B 2005, 109, 10279.
- 44 Huang, C. W.; Chuang, C. M.; Ting, J. M.; Teng, H. J Power Sources 2008, 183, 406.