Thermo-oxidative decomposition kinetics of elastomeric composites based on styrene-(ethylene-butylene)-styrene triblock copolymer and organomontmorillonite
Corresponding Author
Sunan Saikrasun
Materials Science Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand
Materials Science Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand===Search for more papers by this authorTaweechai Amornsakchai
Center for Alternative Energy, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
Search for more papers by this authorCorresponding Author
Sunan Saikrasun
Materials Science Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand
Materials Science Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand===Search for more papers by this authorTaweechai Amornsakchai
Center for Alternative Energy, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
Search for more papers by this authorAbstract
The elastomeric nanocomposites based on organomontmorillonite (OMMT) and styrene-(ethylene-butylene)-styrene (SEBS) thermoplastic elastomer were prepared by melt processing using maleic anhydride grafted SEBS (SEBS-g-MA) as compatibilizer. Thermo-oxidative decomposition behavior of the neat components and the nanocomposites were investigated using thermogravimertic analysis (TGA) in air atmosphere. The isoconversional method is employed to study the kinetics of thermo-oxidative degradation. The heating modes and the composition of nanocomposites were found to affect the kinetic parameters (Ea, lnA and n). The Ea and lnA values of SEBS, OMMT, and their composites are much higher under dynamic heating than under isothermal heating. The reaction order (n) of OMMT was lower than those of SEBS and their composites. The obtained TG profiles and calculated kinetic parameters indicated that the incorporation of OMMT into SEBS significantly improved the thermal stability both under dynamic heating and under isothermal heating. The simultaneously obtained DSC data showed that the enthalpy of thermal decomposition decreased with OMMT loading. No significant change in the nonisothermal and isothermal stability of the nanocomposites with addition of SEBS-g-MA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
References
- 1 de Paiva, L. B.; Morales, A. R.; Diaz, F. R. V. Appl Clay Sci 2008, 42, 8.
- 2 Ganguly, A.; De Sarka, M.; Bhowmick, A. K. J Appl Polym Sci 2006, 100, 2040.
- 3 Lai, S.-M.; Chen, C.-M. Eur Polym J 2007, 43, 2254.
- 4 Lepoittevin, B.; Devalckenaere, M.; Pantoustier, N.; Alexandre, M.; Kubies, D.; Calberg, C.; Jerome, R.; Henrist, C.; Cloots, R.; Dubois, P. Polymer 2002, 43, 4017.
- 5 Bao, S. P.; Tjong, S. C. Compos A 2007, 38, 378.
- 6 Kato, M.; Usuki, A.; Okada A. J Appl Polym Sci 1997, 66, 1781.
- 7 Osman M. A.; Rupp, J. E. P.; Suter, U. W. Polymer 2005, 46, 1653.
- 8 Ma, J.; Qi, Z.; Hu, Y. J Appl Polym Sci 2001, 82, 3611.
- 9 Tjong, S. C.; Bao, S. P.; Liang, G. D. J Polym Sci Polym Phys 2005, 43, 3112.
- 10 Hotta, S.; Paul, D. R. Polymer 2004, 45, 7639.
- 11 Li, W.; Huang, Y. D.; Ahmadi, S. J. J Appl Polym Sci 2004, 94, 440.
- 12 Acharya, H.; Pramanik, M.; Srivastava, S. K.; Bhowmick, A. K. J Appl Polym Sci 2004, 93, 2429.
- 13 Mohammadpour, Y.; Katbab, A. A. J Appl Polym Sci 2007, 106, 4209.
- 14 Narr, S. S.; Ramesh, C. Macromolecules 2005, 38, 454.
- 15 Usuki, A.; Kawasumi, M.; Kojima, Y.; Okada, A.; Kurauchi, T.; Kamigaito, O. J Mater Res 1993, 88, 1174.
- 16 Liu, X.; Wu, Q.; Zhang, Q.; Mo, Z. J Polym Sci Polym Phys 2002, 41, 63.
- 17 Chen, G. X.; Yoon, J. S. J Polym Sci Polym Phys 2005, 43, 817.
- 18 Ou, C. F.; Ho, M. T.; Lin, J. R. J Polym Res 2003, 10, 127.
- 19 Ke, Y.; Long, C.; Qi, Z. J Appl Polym Sci 1999, 71, 1139.
- 20 Lao, M.; Zhu, J.; Xu, H.; Li, Y.; Shan, W. J Appl Polym Sci 2004, 92, 3430.
- 21 Chang, Y.-W.; Shin, J.-Y.; Ryu, S. H. Polym Int 2004, 53, 1047.
- 22 Lim, S. T.; Lee, C. H.; Kwon, Y. K.; Choi, H. J. J Macromol Sci Phys 2004, 43B, 577.
- 23 Lee, C. H.; Kim, H. B.; Lim, S. T.; Kim, H. S.; Kwon, Y. K.; Choi, H. J Macromol Chem Phys 2006, 207, 444.
- 24 N. R. Legg; D. Holden; H. E. Schroder, Eds. Thermoplastic Elastomers; Hanser: Munich, 1987.
- 25 Marazzato, C.; Peneva, Y.; Lefterova, E.; Filippi, S.; Minkova, L. Polym Test 2007, 26, 526.
- 26 Qin, H.; Zhang, S.; Zhoa, C.; Yang, M. J Polym Sci B Polym Phys 2005, 43, 3713.
- 27 Ozawa, T. Bull Chem Soc Jpn 1965, 38, 1881.
- 28 Flynn, J. H.; Wall, L. A. J Res Natl Bur Stds 1966, 70A, 487.
- 29 Kissinger, H. E. Anal Chem 1957, 29, 1702.
- 30 Tanaka, H. Thermochim Acta 1995, 267, 29.
- 31 Nam, J. D.; Seferis, J. C. J Polym Sci B Polym Phys 1991, 29, 601.
- 32 Vyazovkin, S.; Wight, C. A. J Phys Chem 1997, 101, 8279.
- 33 Roduit, B.; Maciejewski, M.; Baiker, A. Thermochim Acta 1996, 282/283, 101.
- 34 Le Bras, M.; Rose, N.; Burbigot, S.; Henry, Y.; Delobel, R. J Fire Sci 1996, 37, 173.
- 35 Vyazovkin, S. Thermochim Acta 2000, 355, 155.
- 36 Vaia, R. A.; Giannelis E. P. Macromolecules 1997, 30, 8000.
- 37 Filipi, S.; Yordanov, H.; Minkova, L.; Polacco, G.; Talarico M. Macromol Mater Eng 2004, 289, 512.
- 38 Allen, N. S.; Edge, M.; Wilkinson, A.; Liauw, C. M.; Mouretou, D.; Barrio, J.; Martinez-Zaporta, A. Polym Degrad Stabil 2001, 71, 113.
- 39 Zanetti, M.; Bracco, P.; Costa, L. Polym Degrad Stabil 2004, 85, 657.
- 40 Saikrasun, S.; Saengsuwan, S. J Mater Proc Technol 2009, 209, 3490.
- 41 Hatakeyama, T.; Quinn, F. X. Thermal Analysis: Fundamentals and Applications to Polymer Science, 2nd ed.; Wiley: Chichester, 1999.
- 42 Peterson, J. D.; Vyazovkin, S.; Wight, C. A. Macromol Chem Phys 2001, 202, 775.
- 43 Saikrasun, S.; Amornsakchai, T. J Appl Polym Sci 2006, 101, 1610.
- 44 Saikrasun, S.; Amornsakchai, T. J Elast Plast 2007, 39, 213.
- 45 Saikrasun, S.; Amornsakchai, T. J Appl Polym Sci 2008, 107, 2375.
- 46 Qin, H. L.; Zhang, Z. G.; Feng, M.; Gong, F. L.; Zhang, S. M.; Yang, M. S. J Polym Sci B Polym Phys 2004, 42, 3006.
- 47 Zanetti, M.; Camino, G.; Reichert, P.; Mulhaupt, R. Macromol Rapid Commun 2001, 22, 166.
- 48 Friedman, H. J Polym Sci C Polym Symp 1964, 6, 183.