Research of styrene-butadiene rubber/silicon-aluminum oxides nanotube binary nanocomposites
Corresponding Author
Qingguo Wang
Key Laboratory of Rubber-plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
Key Laboratory of Rubber-plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China===Search for more papers by this authorWenxiu Gao
Key Laboratory of Rubber-plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
Search for more papers by this authorLiqun Zhang
Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorCorresponding Author
Qingguo Wang
Key Laboratory of Rubber-plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
Key Laboratory of Rubber-plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China===Search for more papers by this authorWenxiu Gao
Key Laboratory of Rubber-plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
Search for more papers by this authorLiqun Zhang
Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorAbstract
A novel silicon-aluminum oxides (Si-Al) nanotubes with length ranging from 500 to 1000 nm were introduced to fabricate the styrene-butadiene rubber (SBR)/Si-Al nanotube binary nanocomposites. Scanning electron microscope observation showed the Si-Al nanotubes up to 20 parts per hundred parts of rubber (phr) loading level were dispersed well in SBR matrix. Mechanical properties tests, thermogravimetry analysis and dynamic mechanical thermal analysis revealed that the Si-Al nanotubes have the effects on improving shore A hardness, tensile strength, tear strength, initial decomposition temperature, and storage modulus while lower the maximum loss factor (tan δ) of the SBR/Si-Al nanotube binary nanocomposites. FTIR spectra analysis showed that new SiO bond was generated between the hydroxyl group of Si-Al nanotube and the coupling reagent Si69. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
References
- 1 Bhattacharya, M.; Maiti, M.; Anil K. Polym Eng Sci 2009, 49, 81.
- 2 Pradhan, S.; Costa, F. R.; Wagenknecht, U.; Jehnichen, D.; Bhowmick, A. K.; Heinrich, G. Eur Polym J 2008, 44, 3122.
- 3 Endo, M.; Noguchi, T.; Ito, M.; Takeuchi, K.; Hayashi, T.; Kim, Y. A.; Wanibuchi, T.; Jinnai, H.; Terrones, M.; Dresselhaus, M. S. Adv Funct Mater 2008, 18, 3403.
- 4 Acharya, H.; Kuila, T.; Srivastava, S. K.; Bhowmick, A. K. Polym Compos 2008, 29, 443.
- 5 Chen, Y.; Peng, Z.; Kong, L. X.; Huang, M. F.; Li, P. W. Polym Eng Sci 2008, 48, 1674.
- 6 Ismail, H.; Pasbakhsh, P.; Fauzi, M. N. A.; Abu Bakar, A. Polym Test 2008, 27, 841.
- 7 Bokobza, L. Polymer 2007, 48, 4907.
- 8 Bokobza, L. Macromol Mater Eng 2004, 289, 607.
- 9 Arroyo, M.; López-Manchado, M. A.; Herrero, B. Polymer 2003, 44, 2447.
- 10 Kato, M.; Tsukigase, A.; Tanaka, H.; Usuki, A.; Inai, I. J Polym Sci Part A: Polym Chem 2006, 44, 1182.
- 11 Maiti, M.; Bhowmick, A. K. Polymer 2006, 47, 6156.
- 12 Liang, Y. R.; Lu, Y. L.; Wu, Y. P.; Ma, Y.; Zhang, L. Q. Macromol Rapid Commun 2005, 26, 926.
- 13 Psarras, G. C.; Gatos, K. G.; Karger-Kocsis, J. J Appl Polym Sci 2007, 106, 1405.
- 14 Song, M.; Wong, C. W.; Jin, J.; Ansarifar, A.; Zhang, Z. Y.; Richardson, M. Polym Int 2005, 54, 560.
- 15 Valadares, L. F.; Leite, C. A. P.; Galembeck, F. Polymer 2006, 47, 672.
- 16 Takahashi, S.; Goldberg, H. A.; Feeney, C. A.; Karim, D. P.; Farrell, M.; O'Leary, K.; Paul, D. R. Polymer 2006, 47, 3083.
- 17 Zeng, M.; Sun, X.; Yao, X.; Ji, G.; Chen, N.; Wang, B.; Qi, C. J Appl Polym Sci 2007, 106, 1347.
- 18 Peng, Z.; Kong, L. X.; Li, S.-D.; Chen, Y.; Huang, M. F. Compos Sci Technol 2007, 67, 3130.
- 19 Liu, X.; Zhao, S. J Appl Polym Sci 2008, 109, 3900.
- 20 Valentini, L.; Biagiotti, J.; Kenny, J. M.; López Manchado, M. A. J Appl Polym Sci 2003, 89, 2657.
- 21 De Falco, A.; Goyanes, S.; Rubiolo, G. H.; Mondragon, I.; Marzocca, A. Appl Surf Sci 2007, 254, 262.
- 22 Bokobza, L.; Rahmani, M.; Belin, C.; Bruneel, J.-L. J Polym Sci Part B: Polym Phys 2008, 46, 1939.
- 23 Sui, G.; Zhong, W. H.; Yang, X. P.; Yu, Y. H.; Zhao, S. H. Polym Adv Technol 2008, 19, 1543.
- 24 Ismail, H.; Pasbakhsh, P.; Fauzi, M. N. A.; Abu Bakar, A. Polym Test 2008, 27, 841.
- 25 Wang, Y.; Zhang, H.; Wu, Y.; Yang, J.; Zhang, L. Eur Polym J 2005, 41, 2776.
- 26 Tian, M.; Cheng, L.; Liang, W.; Zhang, L. Macromol Mater Eng 2005, 290, 681.
- 27 Chen, L.; Chen, G. H.; Lu, L. Adv Funct Mater 2007, 17, 898.
- 28 Scott Parent, J.; Liskova, A.; Resendes, R. Polymer 2004, 45, 8091.
- 29 Iijima, S. Nature 1991, 354, 56.
- 30 Barraza, H. J.; Pompeo, F.; O'Rear, E. A.; Resasco, D. E. Nano Lett 2002, 2, 797.
- 31 Frogley, M. D.; Ravich, D.; Wagner, H. D. Compos Sci Technol 2003, 63, 1647.
- 32 Cheng, Z.; Ma, B. Chin J Funct Mater 2007, 38 (A06), 2320.
- 33 Ma, B.; Cheng, Z.; Kong, L. China Pat. 200,710,189,888.8 ( 2007).
- 34 Shih, Y. F.; Chen, L. S.; Jeng, R. J. Polymer 2008, 49, 4602.
- 35 Shin, Y.; Lee, D.; Lee, K.; Ahn, K. H.; Kim, B. J Ind Eng Chem 2008, 14, 515.
- 36 López-Manchado, M. A.; Valentín, J. L.; Carretero, J.; Barroso, F.; Arroyo, M. Eur Polym J 2007, 43, 4143.
- 37 ten Brinke, J. W.; Debnath, S. C.; Reuvekamp, L. A. E. M.; Noordermeer, J. W. M. Compos Sci Technol 2003, 63, 1165.
- 38 Lenza, R. F. S.; Vasconcelos, W. L. Mater Res 2001, 4, 175.
- 39 Grieco, E.; Bernardi, M.; Baldi, V. J Anal Appl Pyrolysis 2008, 82, 304.
- 40 Meneghetti, P.; Qutubuddin, S. Thermochim Acta 2006, 442, 74.
- 41 Kim, S. H.; Chung, J. W.; Kang, T. J.; Kwak, S.-Y.; Suzuki, T. Polymer 2007, 48, 4271.