Estimation of density and viscosity of deep eutectic solvents: Experimental and machine learning approach
Dhruv Patel
Chemical Engineering Department, Shroff S. R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, India
Search for more papers by this authorCorresponding Author
Krunal J. Suthar
Chemical Engineering Department, Shroff S. R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, India
Correspondence
Krunal J. Suthar, Associate Professor, Chemical Engineering Department, Shroff S. R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, No: 402, Ankleshwar - Valia Rd, Vataria, Gujarat 393135, India.
Email: [email protected]
Search for more papers by this authorHemant Kumar Balsora
Chemical Engineering Department, Shroff S. R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, India
Search for more papers by this authorDhara Patel
Chemical Engineering Department, Shroff S. R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, India
Search for more papers by this authorSwapna Rekha Panda
Chemical Engineering Department, Shroff S. R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, India
Search for more papers by this authorNirav Bhavsar
Department of Chemical Engineering, Dharmsinh Desai University, Nadiad, India
Search for more papers by this authorDhruv Patel
Chemical Engineering Department, Shroff S. R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, India
Search for more papers by this authorCorresponding Author
Krunal J. Suthar
Chemical Engineering Department, Shroff S. R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, India
Correspondence
Krunal J. Suthar, Associate Professor, Chemical Engineering Department, Shroff S. R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, No: 402, Ankleshwar - Valia Rd, Vataria, Gujarat 393135, India.
Email: [email protected]
Search for more papers by this authorHemant Kumar Balsora
Chemical Engineering Department, Shroff S. R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, India
Search for more papers by this authorDhara Patel
Chemical Engineering Department, Shroff S. R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, India
Search for more papers by this authorSwapna Rekha Panda
Chemical Engineering Department, Shroff S. R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, India
Search for more papers by this authorNirav Bhavsar
Department of Chemical Engineering, Dharmsinh Desai University, Nadiad, India
Search for more papers by this authorAbstract
Deep eutectic solvents (DESs) are increasingly recognized as sustainable alternatives suitable for a range of industrial applications. A precise comprehension of their properties is important for progress in science and engineering. In this study, we synthesized four novel ternary DESs using mandelic acid and measured their densities and viscosities at temperatures ranging from 298 to 353 K. Subsequently, an artificial neural network model was developed to predict DES density and viscosity based on temperature, critical properties, acentric factor, and molar ratio. The neural network parameters were optimized using experimental data from synthesized DESs and literature sources, both collectively over 500 data points for density and viscosity. Additionally, we investigated the influence of input parameters on model accuracy and assessed their significance. The results show that the average percentage relative error was 0.501 for density and 4.81 for viscosity. This research helps advance science and engineering applications of DESs.
Supporting Information
Filename | Description |
---|---|
APJ_3151-sup-0001-Supplementary_data.docxWord 2007 document , 466.7 KB |
Table S1. Collected HBA and HBD and calculated input properties. Table S2. Experimental and Predicted Density Values. Table S3. Experimental and Predicted Viscosity Values. Table S4. Experimental and Predicted Density Values for synthesized DESs in the present study. Table S5. Experimental and Predicted Viscosity Values for synthesized DESs in the present study. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Wang J, Zhang S, Ma Z, Yan L. Deep eutectic solvents eutectogels: progress and challenges. Green Chem Eng. 2021; 2(4): 359-367. doi:10.1016/j.gce.2021.06.001
10.1016/j.gce.2021.06.001 Google Scholar
- 2Fauzi R, Daik R, Fauzi B, Mamauod SNL. Physicochemical properties of N,N-diethylethanolammonium chloride/ethylene glycol-based deep eutectic solvent for replacement of ionic liquid. J Electrochem Energy Convers Storage. 2023; 20(2):020905. doi:10.1115/1.4056638
- 3Su M, Jin R, Zhu J, et al. Investigation of the microstructure and dynamical evolution following gradient hydration of deep eutectic solvent, with application to polyphenol extraction. ACS Sustain Chem Eng. 2024; 12: 1884-1896. doi:10.1021/acssuschemeng.3c05709
- 4Zhang M, Zhang Z, Gul Z, et al. Advances of responsive deep eutectic solvents and application in extraction and separation of bioactive compounds. J Sep Sci. 2023; 46(15):e2300098. doi:10.1002/jssc.202300098
- 5Li X, Row KH. Development of deep eutectic solvents applied in extraction and separation. J Sep Sci. 2016; 39(18): 3505-3520. doi:10.1002/jssc.201600633
- 6Guazzelli L, Marrucho IM, Mu T, Banerjee T. Editorial: ionic liquids and deep eutectic solvents: two contrasting options or opposite sides of the same coin? Front Chem. 2023; 11:1169688. doi:10.3389/fchem.2023.1169688
- 7Wang Y, Chen W, Zhao Q, et al. Ionicity of deep eutectic solvents by Walden plot and pulsed field gradient nuclear magnetic resonance (PFG-NMR). Phys Chem Chem Phys. 2020; 22(44): 25760-25768. doi:10.1039/D0CP01431A
- 8Płotka-Wasylka J, de la Guardia M, Andruch V, Vilková M. Deep eutectic solvents vs ionic liquids: similarities and differences. Microchem J. 2020; 159:105539. doi:10.1016/j.microc.2020.105539
- 9Jiménez-Amezcua I, López-Martínez MI, Ruiz-Matute AI, Sanz ML. Advances and challenges in the selective extraction of low molecular weight carbohydrates using ionic liquids and deep eutectic solvents. TrAC Trends Anal Chem. 2024; 171:117507. doi:10.1016/j.trac.2023.117507
- 10Nam NN, Do HDK, Trinh KTL, Lee NY. Design strategy and application of deep eutectic solvents for green synthesis of nanomaterials. Nano. 2023; 13(7):1164. doi:10.3390/nano13071164
- 11Długosz O. Natural deep eutectic solvents in the synthesis of inorganic nanoparticles. Materials. 2023; 16(2):627. doi:10.3390/ma16020627
- 12Mu L, Gao J, Zhang Q, et al. Research Progress on deep eutectic solvents and recent applications. Pro. 2023; 11(7):1986. doi:10.3390/pr11071986
- 13Socas-Rodríguez B, Santana-Mayor Á, Herrera-Herrera AV, Rodríguez-Delgado MÁ. Deep eutectic solvents. In: Green Sustainable Process for Chemical and Environmental Engineering and Science. Elsevier; 2020: 123-177. doi:10.1016/B978-0-12-817386-2.00005-6
10.1016/B978-0-12-817386-2.00005-6 Google Scholar
- 14Hooshmand SE, Afshari R, Ramón DJ, Varma RS. Deep eutectic solvents: cutting-edge applications in cross-coupling reactions. Green Chem. 2020; 22(12): 3668-3692. doi:10.1039/D0GC01494J
- 15Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V. Application of deep eutectic solvents in analytical chemistry. Microchem J. 2017; 135: 33-38. doi:10.1016/j.microc.2017.07.015
- 16Tang B, Zhang H, Row KH. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J Sep Sci. 2015; 38(6): 1053-1064. doi:10.1002/jssc.201401347
- 17Marcus Y. Applications of deep eutectic solvents. In: Deep Eutectic Solvents. Springer International Publishing; 2019: 111-151. doi:10.1007/978-3-030-00608-2_4
10.1007/978-3-030-00608-2_4 Google Scholar
- 18Cruz H, Jordao N, Pinto AL, Dionisio M, Neves LA, Branco LC. Alkaline iodide-based deep eutectic solvents for electrochemical applications. ACS Sustain Chem Eng. 2020; 8(29): 10653-10663. doi:10.1021/acssuschemeng.9b06733
- 19Ijardar SP, Singh V, Gardas RL. Revisiting the physicochemical properties and applications of deep eutectic solvents. Molecules. 2022; 27(4):1368. doi:10.3390/molecules27041368
- 20Martín MI, García-Díaz I, López FA. Properties and perspective of using deep eutectic solvents for hydrometallurgy metal recovery. Miner Eng. 2023; 203:108306. doi:10.1016/j.mineng.2023.108306
- 21Gajardo-Parra NF, Lubben MJ, Winnert JM, Leiva Á, Brennecke JF, Canales RI. Physicochemical properties of choline chloride-based deep eutectic solvents and excess properties of their pseudo-binary mixtures with 1-butanol. J Chem Thermodyn. 2019; 133: 272-284. doi:10.1016/j.jct.2019.02.010
- 22Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev. 2014; 114(21): 11060-11082. doi:10.1021/cr300162p
- 23Jablonsky M, Skulcova A, Haz A, Sima J, Majova V. Long-term isothermal stability of deep eutectic solvents. Bioresources. 2018; 13(4): 7545-7559. doi:10.15376/biores.13.4.7545-7559
- 24Saputra R, Walvekar R, Khalid M, Mubarak NM. Synthesis and thermophysical properties of ethylammonium chloride-glycerol-ZnCl2 ternary deep eutectic solvent. J Mol Liq. 2020; 310:113232. doi:10.1016/j.molliq.2020.113232
- 25Dietz CHJT, Erve A, Kroon MC, van Sint AM, Gallucci F, Held C. Thermodynamic properties of hydrophobic deep eutectic solvents and solubility of water and HMF in them: measurements and PC-SAFT modeling. Fluid Phase Equilib. 2019; 489: 75-82. doi:10.1016/j.fluid.2019.02.010
- 26Faraji S, Mokhtarpour M, Behboudi E, Sadrmousavi A, Shekaari H, Zafarani-Moattar MT. Vapor–liquid equilibria and computational study for aqueous solutions of novel deep eutectic solvents (amino acid/lactic acid) at 298.15 K. J Chem Eng Data. 2020; 65(7): 3262-3269. doi:10.1021/acs.jced.9b01169
- 27Alhadid A, Mokrushina L, Minceva M. Influence of the molecular structure of constituents and liquid phase non-ideality on the viscosity of deep eutectic solvents. Molecules. 2021; 26(14):4208. doi:10.3390/molecules26144208
- 28Chatterjee S, Deshmukh SH, Bagchi S. Does viscosity drive the dynamics in an alcohol-based deep eutectic solvent? J Phys Chem B. 2022; 126(41): 8331-8337. doi:10.1021/acs.jpcb.2c06521
- 29Wang H, Wang Y, Wang S, et al. Density and viscosity of deep eutectic solvents at different temperatures and compositions: measurement and prediction model. Asia Pac J Chem Eng. 2024; 19(3):e3035. doi:10.1002/apj.3035
- 30Wang H, Wang Y, Wang S, Fang Z, Li H, Fang J. Density and viscosity of deep eutectic solvents at different temperatures and compositions: experimental data and predictive modeling. 2022. 10.2139/ssrn.4314868.
- 31Omar KA, Sadeghi R. Database of deep eutectic solvents and their physical properties: a review. J Mol Liq. 2023; 384:121899. doi:10.1016/j.molliq.2023.121899
- 32Al-Bodour A, Alomari N, Gutiérrez A, Aparicio S, Atilhan M. Exploring the thermophysical properties of natural deep eutectic solvents for gas capture applications: a comprehensive review. Green Chem Eng. 2024; 5(3): 307-338. doi:10.1016/j.gce.2023.09.003
10.1016/j.gce.2023.09.003 Google Scholar
- 33Zhang M, Zhang X, Liu Y, et al. Insights into the relationships between physicochemical properties, solvent performance, and applications of deep eutectic solvents. Environ Sci Pollut Res. 2021; 28(27): 35537-35563. doi:10.1007/s11356-021-14485-2
- 34Omar KA, Sadeghi R. Physicochemical properties of deep eutectic solvents: a review. J Mol Liq. 2022; 360:119524. doi:10.1016/j.molliq.2022.119524
- 35Mirza NR, Nicholas NJ, Wu Y, Kentish S, Stevens GW. Estimation of normal boiling temperatures, critical properties, and acentric factors of deep eutectic solvents. J Chem Eng Data. 2015; 60(6): 1844-1854. doi:10.1021/acs.jced.5b00046
- 36Alhadid A, Mokrushina L, Minceva M. Modeling of solid–liquid equilibria in deep eutectic solvents: a parameter study. Molecules. 2019; 24(12):2334. doi:10.3390/molecules24122334
- 37Ferreira ESC, Voroshylova IV, Figueiredo NM, Cordeiro MNDS. Molecular dynamic study of alcohol-based deep eutectic solvents. J Chem Phys. 2021; 155(6):064506. doi:10.1063/5.0058561
- 38Haghbakhsh R, Taherzadeh M, Duarte ARC, Raeissi S. A general model for the surface tensions of deep eutectic solvents. J Mol Liq. 2020; 307:112972. doi:10.1016/j.molliq.2020.112972
- 39Bakhtyari A, Haghbakhsh R, Duarte ARC, Raeissi S. A simple model for the viscosities of deep eutectic solvents. Fluid Phase Equilib. 2020; 521:112662. doi:10.1016/j.fluid.2020.112662
- 40Haghbakhsh R, Bardool R, Bakhtyari A, Duarte ARC, Raeissi S. Simple and global correlation for the densities of deep eutectic solvents. J Mol Liq. 2019; 296:111830. doi:10.1016/j.molliq.2019.111830
- 41Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM. Prediction of deep eutectic solvents densities at different temperatures. Thermochim Acta. 2011; 515: 67-72. doi:10.1016/j.tca.2010.12.022
- 42Haghbakhsh R, Raeissi S. Two simple correlations to predict viscosities of pure and aqueous solutions of ionic liquids. J Mol Liq. 2015; 211: 948-956. doi:10.1016/j.molliq.2015.08.036
- 43Valderrama JO, Cardona LF, Rojas RE. Correlation and prediction of ionic liquid viscosity using Valderrama-Patel-Teja cubic equation of state and the geometric similitude concept. Part I: pure ionic liquids. Fluid Phase Equilib. 2019; 497: 164-177. doi:10.1016/j.fluid.2019.04.031
- 44Mjalli F. Mass connectivity index-based density prediction of deep eutectic solvents. Fluid Phase Equilib. 2016; 409: 312-317. doi:10.1016/j.fluid.2015.09.053
- 45Valderrama J, Zarricueta K. A simple and generalized model for predicting the density of ionic liquids. Fluid Phase Equilib. 2009; 275(2): 145-151. doi:10.1016/j.fluid.2008.10.002
- 46Halder AK, Haghbakhsh R, Voroshylova IV, Duarte ARC, Cordeiro MNDS. Predicting the surface tension of deep eutectic solvents: a step forward in the use of greener solvents. Molecules. 2022; 27(15):4896. doi:10.3390/molecules27154896
- 47Khajeh A. Applying molecular approaches to the estimation of surface tension of deep eutectic solvents. J Solut Chem. 2022; 51(4): 448-464. doi:10.1007/s10953-022-01156-0
- 48Vorobyova VI, Linyucheva OV, Chygyrynets OE, Skiba MI, Vasyliev GS. Comprehensive physicochemical evaluation of deep eutectic solvents: quantum-chemical calculations and electrochemical stability. Mol Cryst Liq Cryst. 2023; 750(1): 60-68. doi:10.1080/15421406.2022.2073037
- 49Lemaoui T, Boublia A, Darwish AS, et al. Predicting the surface tension of deep eutectic solvents using artificial neural networks. ACS Omega. 2022; 7(36): 32194-32207. doi:10.1021/acsomega.2c03458
- 50Bunquin RMA, Caparanga AR. Predicting the heat capacities of ammonium- and phosphonium-based deep eutectic solvents using artificial neural network. J Phys Conf Ser. 2021; 1893(1):012001. doi:10.1088/1742-6596/1893/1/012001
- 51Suthar KJ, Joshipura MH. Study on empirical models of isobaric heat capacities and conductivities for ammonium salt-based DESs. Chem Eng J Adv. 2021; 7:100132. doi:10.1016/j.ceja.2021.100132
- 52Shahbaz K, Baroutian S, Mjalli FS, Hashim MA, AlNashef IM. Densities of ammonium and phosphonium based deep eutectic solvents: prediction using artificial intelligence and group contribution techniques. Thermochim Acta. 2012; 527: 59-66. doi:10.1016/j.tca.2011.10.010
- 53Abdollahzadeh M, Khosravi M, Hajipour Khire Masjidi B, et al. Estimating the density of deep eutectic solvents applying supervised machine learning techniques. Sci Rep. 2022; 12(1):4954. doi:10.1038/s41598-022-08842-5
- 54Dashti A, Raji M, Amani P, Baghban A, Mohammadi AH. Insight into the estimation of equilibrium CO2 absorption by deep eutectic solvents using computational approaches. Sep Sci Technol. 2021; 56(14): 2351-2368. doi:10.1080/01496395.2020.1828460
- 55Haghbakhsh R, Raeissi S, Parvaneh K, Shariati A. The friction theory for modeling the viscosities of deep eutectic solvents using the CPA and PC-SAFT equations of state. J Mol Liq. 2018; 249: 554-561. doi:10.1016/j.molliq.2017.11.054
- 56Bagheri H, Ghader S, AbdulAmeer S, Ahmad N. Comprehensive study on deep eutectic solvent density based on various EoSs: SRK, PT, VTSRK, sPC-SAFT. J Mol Liq. 2024; 393:123627. doi:10.1016/j.molliq.2023.123627
- 57Cea-Klapp E, Polishuk I, Canales RI, Quinteros-Lama H, Garrido JM. Estimation of thermodynamic properties and phase equilibria in systems of deep eutectic solvents by PC-SAFT EoS. Ind Eng Chem Res. 2020; 59(51): 22292-22300. doi:10.1021/acs.iecr.0c05109
- 58Peng D, Minceva M. Predicting the density and viscosity of deep eutectic solvents at atmospheric and elevated pressures. Fluid Phase Equilib. 2024; 582:114086. doi:10.1016/j.fluid.2024.114086
- 59Vuksanovic J, Todorovic N, Kijevcanin M, Serbanovic S, Radovic I. Experimental investigation and modeling of thermophysical and extraction properties of choline chloride + DL-malic acid based deep eutectic solvent. J Serb Chem Soc. 2017; 82(11): 1287-1302. doi:10.2298/JSC170316054V
- 60Reza Izadi M, Haghbakhsh R, Raeissi S. Thermodynamic screening of various group contribution methods for estimation of the critical properties and acentric factors of deep eutectic solvents. J Mol Liq. 2024; 399:124345. doi:10.1016/j.molliq.2024.124345
- 61Hou X-J, Yu L-Y, Wang Y-X, Wu K-J, He C-H. Comprehensive prediction of densities for deep eutectic solvents: a new bonding-group interaction contribution scheme. Ind Eng Chem Res. 2021; 60(35): 13127-13139. doi:10.1021/acs.iecr.1c02260
- 62Di Pietro T, Cesari L, Mutelet F. Group contribution models for densities and heat capacities of deep eutectic solvents. Fluid Phase Equilib. 2023; 572:113854. doi:10.1016/j.fluid.2023.113854
- 63Yu L, Hou X, Ren G, Wu K, He C. Viscosity model of deep eutectic solvents from group contribution method. AIChE J. 2022; 68:e17744. doi:10.1002/aic.17744
- 64Haghbakhsh R, Raeissi S, Duarte ARC. Group contribution and atomic contribution models for the prediction of various physical properties of deep eutectic solvents. Sci Rep. 2021; 11(1):6684. doi:10.1038/s41598-021-85824-z
- 65Wojeicchowski JP, Abranches DO, Ferreira AM, Mafra MR, Coutinho JAP. Using COSMO-RS to predict solvatochromic parameters for deep eutectic solvents. ACS Sustain Chem Eng. 2021; 9(30): 10240-10249. doi:10.1021/acssuschemeng.1c02621
- 66Lemaoui T, Darwish AS, Hammoudi NEH, et al. Prediction of electrical conductivity of deep eutectic solvents using COSMO-RS sigma profiles as molecular descriptors: a quantitative structure–property relationship study. Ind Eng Chem Res. 2020; 59(29): 13343-13354. doi:10.1021/acs.iecr.0c02542
- 67Silva LP, Fernandez L, Conceição JHF, et al. Design and characterization of sugar-based deep eutectic solvents using conductor-like screening model for real solvents. ACS Sustain Chem Eng. 2018; 6(8): 10724-10734. doi:10.1021/acssuschemeng.8b02042
- 68Roosta A, Haghbakhsh R, Duarte ARC, Raeissi S. Machine learning coupled with group contribution for predicting the density of deep eutectic solvents. Fluid Phase Equilib. 2023; 565:113672. doi:10.1016/j.fluid.2022.113672
- 69Roosta A, Haghbakhsh R, Rita C, Duarte A, Raeissi S. Deep eutectic solvent viscosity prediction by hybrid machine learning and group contribution. J Mol Liq. 2023; 388:122747. doi:10.1016/j.molliq.2023.122747
- 70Wang D, Zhang M, Law CL, Zhang L. Natural deep eutectic solvents for the extraction of lentinan from shiitake mushroom: COSMO-RS screening and ANN-GA optimizing conditions. Food Chem. 2024; 430:136990. doi:10.1016/j.foodchem.2023.136990
- 71Macías-Salinas R, Romero-Rueda IM. Density and viscosity modeling of three deep eutectic solvents using a volume-shifted cubic equation of state coupled with the friction theory. Ind Eng Chem Res. 2024; 63(1): 718-730. doi:10.1021/acs.iecr.3c03478
- 72Sereshti H, Abdolhosseini G, Soltani S, Sadatfaraji H, Karami S, Rashidi NH. A green ternary polymeric deep eutectic solvent used in dispersive liquid-liquid microextraction technique for isolation of multiclass pesticides in fruit juice samples. J Food Compos Anal. 2023; 124:105663. doi:10.1016/j.jfca.2023.105663
- 73Li R, Shi G, Chen L, Liu Y. Polysaccharides extraction from Ganoderma lucidum using a ternary deep eutectic solvents of choline chloride/guaiacol/lactic acid. Int J Biol Macromol. 2024; 263(Pt 1):130263. doi:10.1016/j.ijbiomac.2024.130263
- 74Boublia A, Lemaoui T, Almustafa G, et al. Critical properties of ternary deep eutectic solvents using group contribution with extended Lee–Kesler mixing rules. ACS Omega. 2023; 8(14): 13177-13191. doi:10.1021/acsomega.3c00436
- 75Ghaedi H, Ayoub M, Sufian S, Shariff AM, Lal B. The study on temperature dependence of viscosity and surface tension of several Phosphonium-based deep eutectic solvents. J Mol Liq. 2017; 241: 500-510. doi:10.1016/j.molliq.2017.06.024
- 76Ghareh Bagh FS, Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM. Zinc (II) chloride-based deep eutectic solvents for application as electrolytes: preparation and characterization. J Mol Liq. 2015; 204: 76-83. doi:10.1016/j.molliq.2015.01.025
- 77Zuo Y, Xuan Y, Wang Y, Tong J. Effect of water on the physical properties of quaternary ammonium salt–(DL)-lactic acid deep eutectic solvents. J Chem Eng Data. 2024; 69(6): 2107-2120. doi:10.1021/acs.jced.3c00781
- 78Hebbar A, Debraj D, Acharya S, Puttapati SK, Vatti AK, Dey P. Deep eutectic solvents interaction with asphaltenes: a combined experimental and molecular dynamics study. J Mol Liq. 2023; 387:122627. doi:10.1016/j.molliq.2023.122627
- 79Jurić T, Uka D, Holló BB, Jović B, Kordić B, Popović BM. Comprehensive physicochemical evaluation of choline chloride-based natural deep eutectic solvents. J Mol Liq. 2021; 343:116968. doi:10.1016/j.molliq.2021.116968
- 80Arkawaz AF, Abdullah BA, Mustafa Ha S. Physical, thermal and structural properties of 1 choline chloride: 2 urea based ionic liquids. Singap J Sci Res. 2020; 10(4): 417-424. doi:10.3923/sjsres.2020.417.424
10.3923/sjsres.2020.417.424 Google Scholar
- 81Luo J, Conrad O, Vankelecom IFJ. Physicochemical properties of phosphonium-based and ammonium-based protic ionic liquids. J Mater Chem. 2012; 22(38):20574. doi:10.1039/c2jm34359b
- 82Kareem MA, Mjalli FS, Hashim MA, AlNashef IM. Phosphonium-based ionic liquids analogues and their physical properties. J Chem Eng Data. 2010; 55(11): 4632-4637. doi:10.1021/je100104v
- 83Abbott AP, Capper G, Gray S. Design of improved deep eutectic solvents using hole theory. ChemPhysChem. 2006; 7(4): 803-806. doi:10.1002/cphc.200500489
- 84Moradi H, Farzi N. Experimental and computational assessment of the physicochemical properties of choline chloride/ethylene glycol deep eutectic solvent in 1:2 and 1:3 mole fractions and 298.15–398.15 K. J Mol Liq. 2021; 339:116669. doi:10.1016/j.molliq.2021.116669
- 85Rodriguez NR, Ferre Guell J, Kroon MC. Glycerol-based deep eutectic solvents as extractants for the separation of MEK and ethanol via liquid-liquid extraction. J Chem Eng Data. 2016; 61(2): 865-872. doi:10.1021/acs.jced.5b00717
- 86Zainal-Abidin MH, Hayyan M, Wong WF. Hydrophobic deep eutectic solvents: current progress and future directions. J Ind Eng Chem. 2021; 97: 142-162.
- 87Khandelwal S, Tailor YK, Kumar M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J Mol Liq. 2016; 215: 345-386. doi:10.1016/j.molliq.2015.12.015
- 88Liu X, Gao B, Jiang Y, Ai N, Deng D. Solubilities and thermodynamic properties of carbon dioxide in Guaiacol-based deep eutectic solvents. J Chem Eng Data. 2017; 62(4): 1448-1455. doi:10.1021/acs.jced.6b01013
- 89Ghaedi H, Ayoub M, Sufian S, Lal B, Shariff AM. Measurement and correlation of physicochemical properties of phosphonium-based deep eutectic solvents at several temperatures (293.15 K–343.15 K) for CO2 capture. J Chem Thermodyn. 2017; 113: 41-51. doi:10.1016/j.jct.2017.05.020
- 90Lu M, Han G, Jiang Y, Zhang X, Deng D, Ai N. Solubilities of carbon dioxide in the eutectic mixture of levulinic acid (or furfuryl alcohol) and choline chloride. J Chem Thermodyn. 2015; 88: 72-77. doi:10.1016/j.jct.2015.04.021
- 91Guo W, Hou Y, Ren S, Tian S, Wu W. Formation of deep eutectic solvents by phenols and choline chloride and their physical properties. J Chem Eng Data. 2013; 58(4): 866-872. doi:10.1021/je300997v
- 92Zhu J, Yu K, Zhu Y, et al. Physicochemical properties of deep eutectic solvents formed by choline chloride and phenolic compounds at T = (293.15 to 333.15) K: the influence of electronic effect of substitution group. J Mol Liq. 2017; 232: 182-187. doi:10.1016/j.molliq.2017.02.071
- 93Chemat F, Anjum H, Shariff AM, Kumar P, Murugesan T. Thermal and physical properties of (choline chloride + urea + l-arginine) deep eutectic solvents. J Mol Liq. 2016; 218: 301-308. doi:10.1016/j.molliq.2016.02.062
- 94Chen Y, Ai N, Li G, Shan H, Cui Y, Deng D. Solubilities of carbon dioxide in eutectic mixtures of choline chloride and dihydric alcohols. J Chem Eng Data. 2014; 59(4): 1247-1253. doi:10.1021/je400884v
- 95Su HZ, Yin JM, Liu QS, Li CP. Properties of four deep eutectic solvents: density, electrical conductivity, dynamic viscosity and refractive index. Wuli Huaxue Xuebao/Acta Physico - Chimica Sinica. 2015; 31(8): 1468-1473. doi:10.3866/PKU.WHXB201506111
- 96Rodriguez NR, Requejo PF, Kroon MC. Aliphatic-aromatic separation using deep eutectic solvents as extracting agents. Ind Eng Chem Res. 2015; 54(45): 11404-11412. doi:10.1021/acs.iecr.5b02611
- 97Carriazo D, Serrano MC, Gutiérrez MC, Ferrer ML, del Monte F. Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem Soc Rev. 2012; 41(14): 4996-5014. doi:10.1039/c2cs15353j
- 98Deng D, Jiang Y, Liu X, Zhang Z, Ai N. Investigation of solubilities of carbon dioxide in five levulinic acid-based deep eutectic solvents and their thermodynamic properties. J Chem Thermodyn. 2016; 103: 212-217. doi:10.1016/j.jct.2016.08.015
- 99Lin CM, Leron RB, Caparanga AR, Li MH. Henry's constant of carbon dioxide-aqueous deep eutectic solvent (choline chloride/ethylene glycol, choline chloride/glycerol, choline chloride/malonic acid) systems. J Chem Thermodyn. 2014; 68: 216-220. doi:10.1016/j.jct.2013.08.029
- 100Gutiérrez MC, Carriazo D, Ania CO, Parra JB, Ferrer ML, Del Monte F. Deep eutectic solvents as both precursors and structure directing agents in the synthesis of nitrogen doped hierarchical carbons highly suitable for CO2 capture. Energy Environ Sci. 2011; 4(9): 3535-3544. doi:10.1039/c1ee01463c
- 101Romero A, Santos A, Tojo J, Rodríguez A. Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater. 2008; 151(1): 268-273. doi:10.1016/j.jhazmat.2007.10.079
- 102Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC. Natural deep eutectic solvents—solvents for the 21st century. ACS Sustain Chem Eng. 2014; 2(5): 1063-1071. doi:10.1021/sc500096j
- 103Leron RB, Li MH. Solubility of carbon dioxide in a choline chloride-ethylene glycol based deep eutectic solvent. Thermochim Acta. 2013; 551: 14-19. doi:10.1016/j.tca.2012.09.041
- 104Yadav A, Trivedi S, Rai R, Pandey S. Densities and dynamic viscosities of (choline chloride+glycerol) deep eutectic solvent and its aqueous mixtures in the temperature range (283.15-363.15)K. Fluid Phase Equilib. 2014; 367: 135-142. doi:10.1016/j.fluid.2014.01.028
- 105Zhao BY, Xu P, Yang FX, Wu H, Zong MH, Lou WY. Biocompatible deep eutectic solvents based on choline chloride: characterization and application to the extraction of Rutin from Sophora japonica. ACS Sustain Chem Eng. 2015; 3(11): 2746-2755. doi:10.1021/acssuschemeng.5b00619
- 106Zhang Y, Yang J, Li B, Zhang R, Xie X, Zhang J. Density, viscosity, and spectroscopic and computational analyses for hydrogen bonding interaction of 1,2-propylenediamine and ethylene glycol mixtures. J Mol Liq. 2020; 302:112443. doi:10.1016/j.molliq.2020.112443
- 107Patra A, Khokhar V, Pandey S. Decanoic acid based deep eutectic solvents: constituent-controlled physicochemical properties and solvatochromic probe behavior. Ind Eng Chem Res. 2022; 61(39): 14702-14710. doi:10.1021/acs.iecr.2c02608
- 108Ijardar SP. Deep eutectic solvents composed of tetrabutylammonium bromide and PEG: density, speed of sound and viscosity as a function of temperature. J Chem Thermodyn. 2020; 140:105897. doi:10.1016/j.jct.2019.105897
- 109Popescu AM, Donath C, Constantin V. Density, viscosity and electrical conductivity of three choline chloride based ionic liquids. Bulg Chem Commun. 2014; 46(3): 452-457.
- 110AlOmar MK, Hayyan M, Alsaadi MA, Akib S, Hayyan A, Hashim MA. Glycerol-based deep eutectic solvents: physical properties. J Mol Liq. 2016; 215: 98-103. doi:10.1016/j.molliq.2015.11.032
- 111Sarmad S, Xie Y, Mikkola J-P, Ji X. Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New J Chem. 2017; 41(1): 290-301. doi:10.1039/C6NJ03140D
- 112Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM. Prediction of the surface tension of deep eutectic solvents. Fluid Phase Equilib. 2012; 319: 48-54. doi:10.1016/j.fluid.2012.01.025
- 113Valderrama JO, Abu-Sharkh BF. Generalized rackett-type correlations to predict the density of saturated liquids and petroleum fractions. Fluid Phase Equilib. 1989; 51: 87-100. doi:10.1016/0378-3812(89)80356-5
- 114Hanna S, Baja E. A simple urban dispersion model tested with tracer data from Oklahoma City and Manhattan. Atmos Environ. 2009; 43(4): 778-786. doi:10.1016/j.atmosenv.2008.11.005
- 115Alkhatib III, Bahamon D, Llovell F, Abu-Zahra MRM, Vega LF. Perspectives and guidelines on thermodynamic modelling of deep eutectic solvents. J Mol Liq. 2020; 298:112183. doi:10.1016/j.molliq.2019.112183