Monitoring the sonochemical field: A critical review of chemical dosimetry methods
Corresponding Author
Aissa Dehane
Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider-Constantine, Constantine, Algeria
Correspondence
Aissa Dehane, Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider-Constantine 3, P.O. Box 72, 25000 Constantine, Algeria.
Email:[email protected]; [email protected][email protected]
Search for more papers by this authorSlimane Merouani
Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider-Constantine, Constantine, Algeria
Search for more papers by this authorCorresponding Author
Aissa Dehane
Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider-Constantine, Constantine, Algeria
Correspondence
Aissa Dehane, Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider-Constantine 3, P.O. Box 72, 25000 Constantine, Algeria.
Email:[email protected]; [email protected][email protected]
Search for more papers by this authorSlimane Merouani
Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider-Constantine, Constantine, Algeria
Search for more papers by this authorFunding information: . We gratefully acknowledge the financial support provided by the Ministry-of Higher Education and Scientific-Research of Algeria, under project number A16N01UN250320220002, and the Directorate-General for Scientific-Research and-Technological-Development (DGRSDT) directorate.
Abstract
Sonochemistry is a fascinating field that has drawn considerable interest from researchers across different disciplines. One of the key challenges in this field is the accurate characterization of the sonochemical field, which is crucial for understanding the underlying mechanisms and optimizing the process. To address this challenge, researchers have developed various monitoring methods that allow them to measure key parameters such as the intensity, frequency, and distribution of acoustic waves in the sonoreactor. In this review, we focus on the chemical dosimetry techniques that are commonly used for sonochemical monitoring. These techniques have been extensively studied in the literature and are known for their reliability and accuracy. However, as we will see, the performance of these techniques can vary depending on the chemical nature of the probing species and the experimental conditions, highlighting the need for a careful selection and calibration of the monitoring method. We begin by discussing the principles of chemical dosimetry in sonochemistry and how these methods can be used to measure key sono-acoustic parameters. We then provide a detailed analysis of the various dosimetry techniques, including their advantages, limitations, and applicability under different operating conditions. In summary, our review serves as a valuable resource for researchers seeking to optimize their sonochemical experiments and contribute to the advancement of this fascinating field.
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Research
DATA AVAILABILITY STATEMENT
Not applicable.
REFERENCES
- 1Mason TJ, Peters DI. Practical Sonochemistry: power ultrasound uses and applications. 2nd ed. Woodhead Publishing; 2002. doi:10.1533/9781782420620
10.1533/9781782420620 Google Scholar
- 2Wood RJ, Lee J, Bussemaker MJ. A parametric review of sonochemistry: control and augmentation of sonochemical activity in aqueous solutions. Ultrason Sonochem. 2017; 38: 351-370. doi:10.1016/j.ultsonch.2017.03.030
- 3Leighton TG. The acoustic bubble. Vol. 96, 4. Academic press; 1994: 2616. doi:10.1121/1.410082
10.1121/1.410082 Google Scholar
- 4Ashokkumar M, Lee J, Kentish S, Grieser F. Bubbles in an acoustic field: an overview. Ultrason Sonochem. 2007; 14(4): 470-475. doi:10.1016/j.ultsonch.2006.09.016
- 5Lauterborn W, Ohl CD. Cavitation bubble dynamics. Ultrason Sonochem. 1997; 4(2): 65-75. doi:10.1016/S1350-4177(97)00009-6
- 6Huang G, Zhang M, Han L, Ma X, Huang B. Physical investigation of acoustic waves induced by the oscillation and collapse of the single bubble. Ultrason Sonochem. 2021; 72:105440. doi:10.1016/j.ultsonch.2020.105440
- 7Mousavi MF, Ghasemi S. Sonochemistry: A suitable method for synthesis of nano-strured materials. In: FM Nowak, ed. Sonochemistry: theory, reactions, syntheses, and applications. Nova Science Publishers; 2010: 1-62.
- 8Suslick KS, Didenko Y, Fang MM, et al. Acoustic cavitation and its chemical consequences. Philos Trans R Soc a. 1999; 357(1751): 335-353. doi:10.1098/rsta.1999.0330
- 9Suslick KS, Doktycz SJ, Flint EB. On the origin of sonoluminescence and sonochemistry. Ultrasonics. 1990; 28(5): 280-290. doi:10.1016/0041-624X(90)90033-K
- 10Kentish S, Ashokkumar M. The Physical and Chemical Effects of Ultrasound. In: D Bermúdez-aguirre, T Mobbs, GV Barbosa-cánovas, eds. Ultrasound technologies for food and bioprocessing. Springer; 2010. doi:10.1007/978-1-4419-7472-3_1
10.1007/978?1?4419?7472?3_1 Google Scholar
- 11Lee J, Ashokkumar M, Kentish S, Grieser F. Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field. J am Chem Soc. 2005; 127(48): 16810-16811. doi:10.1021/ja0566432
- 12Suslick KS, Flannigan DJ. Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu Rev Phys Chem. 2008; 59(1): 659-683. doi:10.1146/annurev.physchem.59.032607.093739
- 13Yasui K. Fundamentals of acoustic cavitation and sonochemistry. In: AM Pankaj, ed. Theoretical and experimental sonochemistry involving inorganic systems; 2010: 1-29. doi:10.1007/978-90-481-3887-6_1
10.1007/978-90-481-3887-6_1 Google Scholar
- 14Nam S, Han S, Kang J, Choi H. Kinetics and mechanisms of the sonolytic destruction of non-volatile organic compounds: investigation of the sonochemical reaction zone using several OH monitoring techniques. Ultrason Sonochem. 2003; 10(3): 139-147. doi:10.1016/S1350-4177(03)00085-3
- 15Kimura T, Sakamoto T, Leveque JM, et al. Standardization of ultrasonic power for sonochemical reaction. Ultrason Sonochem. 1996; 3(3): S157-S161. doi:10.1016/S1350-4177(96)00021-1
- 16Asakura Y, Maebayashi M, Matsuoka T, Koda S. Characterization of sonochemical reactors by chemical dosimetry. Electron Commun Jpn, Part III. 2007; 90(8): 1-8. doi:10.1002/ecjc.20315
10.1002/ecjc.20315 Google Scholar
- 17Asakura Y, Yasuda K, Kato D, Kojima Y, Koda S. Development of a large sonochemical reactor at a high frequency. Chem Eng J. 2008; 139(2): 339-343. doi:10.1016/j.cej.2007.08.007
- 18Fang X, Mark G, von Sonntag C. OH radical formation by ultrasound in aqueous solutions part I: the chemistry underlying the terephthalate dosimeter. Ultrason Sonochem. 1996; 3(1): 57-63. doi:10.1016/1350-4177(95)00032-1
- 19Hart EJ, Fischer C-H, Henglein A. Isotopic exchange in the sonolysis of aqueous solutions containing nitrogen-14 and nitrogen-15 molecules. J Phys Chem. 1986; 90(22): 5989-5991. doi:10.1021/j100280a104
- 20Mead EL, Sutherland RG, Verrall RE. The effect of ultrasound on water in the presence of dissolved gases. Can J Chem. 1976; 54(7): 1114-1120. doi:10.1139/v76-159
- 21Mohd-Yusof NS, Babgi B, Aksu M, Madhavan J, Ashokkumar M. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrason Sonochem. 2016; 29: 568-576. doi:10.1016/j.ultsonch.2015.06.013
- 22Tauber A, Schuchmann H-P. OH radical formation and dosimetry in the sonolysos of aqueous solutions. Adv Sonochemistry. 1999; 5: 109-146. doi:10.1016/S1569-2868(99)80004-7
10.1016/S1569-2868(99)80004-7 Google Scholar
- 23Mason TJ, Tiehm A, Mason TJ. Advances in sonochemistry. 1st ed. Elsevier B. V; 1999. doi:10.1093/hesc/9780198503712.001.0001
10.1093/hesc/9780198503712.001.0001 Google Scholar
- 24Al-Juboori RA, Yusaf T, Bowtell L. Energy conversion efficiency of pulsed ultrasound. Energy Procedia. 2015; 75: 1560-1568. doi:10.1016/j.egypro.2015.07.340
- 25Engineering C, Nomura H, Koda S, Kojima Y. Quantification of ultrasonic intensity based on the decomposition reaction of porphyrin. Ultrason Sonochem. 1996; 3(3): S153-S156. doi:10.1016/S1350-4177(96)00020-X
10.1016/S1350-4177(96)00020-X Google Scholar
- 26Iida Y, Yasui K, Tuziuti T, Sivakumar M. Sonochemistry and its dosimetry. Microchem J. 2005; 80(2): 159-164. doi:10.1016/j.microc.2004.07.016
- 27Mark G, Tauber A, Laupert R, et al. OH-radical formation by ultrasound in aqueous solution-part II: terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrason Sonochem. 1998; 5(2): 41-52. doi:10.1016/S1350-4177(98)00012-1
- 28Wu TN, Shi MC. pH-affecting sonochemical formation of hydroxyl radicals under 20 kHz ultrasonic irradiation. Sustain Environ Res. 2010; 20: 245-250.
- 29Ebrahiminia A, Mokhtari-Dizaji M, Toliyat T. Correlation between iodide dosimetry and terephthalic acid dosimetry to evaluate the reactive radical production due to the acoustic cavitation activity. Ultrason Sonochem. 2013; 20(1): 366-372. doi:10.1016/j.ultsonch.2012.05.016
- 30Gotz V, Reuland P. A cavitation and free radical dosimeter for ultrasound. Ultrasound Med Biol. 1989; 15(1): 535-539. doi:10.1016/0301-5629(88)90164-0
- 31Mason TJ, Lorimer JP, Bates DM, Zhao Y. Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor. Ultrason Sonochem. 1994; 1(2): S91-S95. doi:10.1016/1350-4177(94)90004-3
- 32Price GJ, Lenz EJ. The use of dosimeters to measure radical production in aqueous sonochemical systems. Ultrasonics. 1993; 31(6): 451-456. doi:10.1016/0041-624X(93)90055-5
- 33Rajamma DB, Anandan S, Yusof NSM, Pollet BG, Ashokkumar M. Sonochemical dosimetry: a comparative study of Weissler, Fricke and terephthalic acid methods. Ultrason Sonochem. 2021; 72:105413. doi:10.1016/j.ultsonch.2020.105413
- 34Buxton GV, Langan JR, Smith JRL. Aromatic hydroxylation. 8. A radiation chemical study of the oxidation of hydroxycyclohexadienyl radicals. J Phys Chem. 1986; 90(23): 6309-6313. doi:10.1021/j100281a050
- 35Pan X-M, Schuchmann MN, von Sonntag C. Oxidation of benzene by the OH radical. A product and pulse radiolysis study in oxygenated aqueous solution. J Chem Soc Perkin Trans. 1993; 2(3): 289-297. doi:10.1039/P29930000289
10.1039/p29930000289 Google Scholar
- 36Merouani S, Hamdaoui O, Saoudi F, Chiha M. Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production. J Hazard Mater. 2010; 178(1-3): 1007-1014. doi:10.1016/j.jhazmat.2010.02.039
- 37Hua I, Hoffmann MR. Optimization of ultrasonic irradiation as an advanced oxidation technology. Environ Sci Technol. 1997; 31(8): 2237-2243. doi:10.1021/es960717f
- 38Koda S, Kimura T, Kondo T, Mitome H. A standard method to calibrate sonochemical efficiency of an individual reaction system. Ulrason Sonochem. 2003; 10(3): 149-156. doi:10.1016/S1350-4177(03)00084-1
- 39Chakinala AGAG, Gogate PR, Burgess AEAE, Bremner DHDH. Intensification of hydroxyl radical production in sonochemical reactors. Ulrasonics - Sonochemistry. 2007; 14(5): 509-551. doi:10.1016/j.ultsonch.2006.09.001
- 40Martínez-Tarifa A, Arrojo S, Ávila-Marín AL, Pérez-Jiménez JA, Sáez V, Ruiz-Lorenzo ML. Salicylic acid dosimetry applied for the statistical determination of significant parameters in a sonochemical reactor. Chem Eng J. 2010; 157(2-3): 420-426. doi:10.1016/j.cej.2009.11.031
- 41Milne L, Stewart I, Bremner DH. Comparison of hydroxyl radical formation in aqueous solutions at different ultrasound frequencies and powers using the salicylic acid dosimeter. Ultrason Sonochem. 2013; 20(3): 984-989. doi:10.1016/j.ultsonch.2012.10.020
- 42Berlan J. Sonochemistry: from research laboratories to industrial plants. Ultrasonics. 1992; 30(4): 203-212. doi:10.1016/0041-624X(92)90078-Z
- 43Matthews RW, Barker NT, Sangster DF. A comparison of some aqueous chemical dosimeters for absorbed doses of less than 1000 rads. Int J Appl Radiat Isot. 1978; 29(1): 1-8. doi:10.1016/0020-708X(78)90150-3
- 44Chang CY, Hsieh YH, Cheng KY, Hsieh LL, Cheng TC, Yao KS. Effect of pH on Fenton process using estimation of hydroxyl radical with salicylic acid as trapping reagent. Water Sci Technol. 2008; 58(4): 873-879. doi:10.2166/wst.2008.429
- 45Makino K, Hagiwara T, Murakami A. A mini review: fundamental aspects of spin trapping with DMPO. Int J Radiat Appl Instrumentation Part. 1991; 37(5-6): 657-665. doi:10.1016/1359-0197(91)90164-W
- 46Kao NH, Su MC. Statistical study of instantaneous demand of Para-chlorobenzoic acid as an ozone/hydroxyl radical probe compound. Environ Eng Sci. 2009; 26(4): 791-798. doi:10.1089/ees.2008.0131
- 47Rochebrochard d'Auzay SD, La BJF, Naffrechoux E. Comparison of characterization methods in high frequency sonochemical reactors of differing configurations. Ultrason Sonochem. 2010; 17(3): 547-554. doi:10.1016/j.ultsonch.2009.10.024
- 48Hasanzadeh H, Mokhtari-Dizaji M, Bathaie SZ, Hassan ZM. Evaluation of correlation between chemical dosimetry and subharmonic spectrum analysis to examine the acoustic cavitation. Ultrason Sonochem. 2010; 17(5): 863-869. doi:10.1016/j.ultsonch.2010.02.009
- 49Cooper W, Weissler A, Cooper HWH, et al. Chemical effect of ultrasonic waves: oxidation of potassium iodide solution by carbon tetrachloride. J Phys Chem. 1950; 9(4): 1769-1775. doi:10.1021/ja01160a102
10.1021/ja01160a102 Google Scholar
- 50Naidu DVP, Rajan R, Kumar R, Gandhi KS, Arakeri VH, Chandrasekaran S. Modelling of batch sonochemical reactor. Chem Eng Sci. 1994; 49(6): 877-888. doi:10.1016/0009-2509(94)80024-3
- 51Seymour JD, Wallace HC, Gupta RB. Sonochemical reactions at 640 kHz using an efficient reactor. Oxidation of potassium iodide. Ultrason Sonochem. 1997; 4(4): 289-293. doi:10.1016/S1350-4177(97)00039-4
- 52Gutierrez M, Henglein A, Ibanez F, Maritza Gutièrrez AH. Radical scavenging in the sonolysis of aqueous solutions of I-, Br-, and N3. J Phys Chem. 1991; 95(15): 6044-6047. doi:10.1021/j100168a061
- 53Shirgaonkar IZ, Pandit AB. Degradation of aqueous solution of potassium iodide and sodium cyanide in the presence of carbon tetrachloride. Ultrason Sonochem. 1997; 4(3): 245-253. doi:10.1016/S1350-4177(97)00022-9
- 54Kirpalani DM, McQuinn KJ. Experimental quantification of cavitation yield revisited: focus on high frequency ultrasound reactors. Ultrason Sonochem. 2006; 13(1): 1-5. doi:10.1016/j.ultsonch.2005.01.001
- 55Owen RW, Wimonwatwatee T, Spiegelhalder B, Bartsch H. A high performance liquid chromatography system for quantification of hydroxyl radical formation by determination of dihydroxy benzoic acids. Eur J Cancer Prev. 1996; 5(4): 233-240. doi:10.1097/00008469-199608000-00003
- 56Weissler A, Hine EJ. Variations of cavitation intensity in an ultrasonic generator. J Acoust Soc am. 1962; 34(1): 130-131. doi:10.1121/1.1909000
10.1121/1.1909000 Google Scholar
- 57Abeledo CA, Kolthoff IM. The reaction between nitrite and iodide and its application to the iodimetric titration of these anions. J am Chem Soc. 1931; 53(8): 2893-2897. doi:10.1021/ja01359a008
- 58Couto AB, De Souza DC, Sartori ER, Jacob P, Klockow D, Neves EA. The catalytic cycle of oxidation of iodide ion in the oxygen/nitrous acid/nitric oxide system and its potential for analytical applications. Analyt Lett. 2006; 39(15): 2763-2774. doi:10.1080/00032710600983387
- 59Ouerhani T, Rachel P, Messaoud WB, Nikitenko SI. Spectroscopy of sonoluminescence and sonochemistry in water saturated with N2−Ar mixtures. J Phys Chem B. 2015; 119(52): 15885-15891. doi:10.1021/acs.jpcb.5b10221
- 60Nikitenko SI, Le Naour C, Moisy P. Comparative study of sonochemical reactors with different geometry using thermal and chemical probes. Ultrason Sonochem. 2007; 14(3): 330-336. doi:10.1016/j.ultsonch.2006.06.006
- 61Arrojo S, Nerı C. Application of salicylic acid dosimetry to evaluate hydrodynamic cavitation as an advanced oxidation process. 2007; 14: 343-349. doi:10.1016/j.ultsonch.2006.06.007
- 62Jen J-F, Leu M-F, Yang TC. Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography. J Chromatogr a. 1998; 796(2): 283-288. doi:10.1016/S0021-9673(97)01019-4
- 63Albarran G, Schuler RH. Concerted effects in the reaction of OH radicals with aromatics: radiolytic oxidation of salicylic acid. Radiat Phys Chem. 2003; 67(3-4): 279-285. doi:10.1016/S0969-806X(03)00052-5
- 64Gruber M, Wiesner G, Burger R, Lindner R. The salicylate trapping method: is oxidation of salicylic acid solution oxygen and time dependent and metal catalysed? J Chromatogr B. 2006; 831(1-2): 320-323. doi:10.1016/j.jchromb.2005.11.017
- 65Tai C, Peng JF, Liu JF, Jiang GB, Zou H. Determination of hydroxyl radicals in advanced oxidation processes with dimethyl sulfoxide trapping and liquid chromatography. Anal Chim Acta. 2004; 527(1): 73-80. doi:10.1016/j.aca.2004.08.019