Revealing flow structures in horizontal pipe and biomass combustor using computational fluid dynamics simulation
Soen Steven
Research Center for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency (BRIN), KST BJ Habibie, South Tangerang, Banten, Indonesia
Biomass Technology Workshop, Faculty of Industrial Technology, Institut Teknologi Bandung, Sumedang, Indonesia
Search for more papers by this authorPandit Hernowo
Department of Chemical Engineering, Universitas Bhayangkara Jakarta Raya, South Jakarta, West Java, Indonesia
Search for more papers by this authorNugroho A. Sasongko
Research Center for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency (BRIN), KST BJ Habibie, South Tangerang, Banten, Indonesia
Energy Security Graduate Program, Universitas Pertahanan Republik Indonesia, Tajur, West Java, Indonesia
Search for more papers by this authorAdik A. Soedarsono
Research Center For Process and Manufacturing Industry Technology, National Research and Innovation Agency (BRIN), KST BJ Habibie, South Tangerang, Banten, Indonesia
Search for more papers by this authorMaya L. D. Wardani
Research Center for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency (BRIN), KST BJ Habibie, South Tangerang, Banten, Indonesia
Search for more papers by this authorGeby Otivriyanti
Research Center for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency (BRIN), KST BJ Habibie, South Tangerang, Banten, Indonesia
Search for more papers by this authorErnie S. A. Soekotjo
Research Center for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency (BRIN), KST BJ Habibie, South Tangerang, Banten, Indonesia
Search for more papers by this authorIbnu M. Hidayatullah
Research Center of Biomass Valorization, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia
Search for more papers by this authorIntan C. Sophiana
Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia
Search for more papers by this authorNeng T. U. Culsum
Research Centre for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), KST BJ Habibie, South Tangerang, Banten, Indonesia
Search for more papers by this authorImam M. Fajri
Biomass Technology Workshop, Faculty of Industrial Technology, Institut Teknologi Bandung, Sumedang, Indonesia
Search for more papers by this authorPasymi Pasymi
Department of Chemical Engineering, Universitas Bung Hatta, Padang, Indonesia
Search for more papers by this authorCorresponding Author
Yazid Bindar
Biomass Technology Workshop, Faculty of Industrial Technology, Institut Teknologi Bandung, Sumedang, Indonesia
Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
Correspondence
Yazid Bindar, Biomass Technology Workshop, Faculty of Industrial Technology, Institut Teknologi Bandung, Sumedang 45363, Indonesia.
Email: [email protected]
Search for more papers by this authorSoen Steven
Research Center for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency (BRIN), KST BJ Habibie, South Tangerang, Banten, Indonesia
Biomass Technology Workshop, Faculty of Industrial Technology, Institut Teknologi Bandung, Sumedang, Indonesia
Search for more papers by this authorPandit Hernowo
Department of Chemical Engineering, Universitas Bhayangkara Jakarta Raya, South Jakarta, West Java, Indonesia
Search for more papers by this authorNugroho A. Sasongko
Research Center for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency (BRIN), KST BJ Habibie, South Tangerang, Banten, Indonesia
Energy Security Graduate Program, Universitas Pertahanan Republik Indonesia, Tajur, West Java, Indonesia
Search for more papers by this authorAdik A. Soedarsono
Research Center For Process and Manufacturing Industry Technology, National Research and Innovation Agency (BRIN), KST BJ Habibie, South Tangerang, Banten, Indonesia
Search for more papers by this authorMaya L. D. Wardani
Research Center for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency (BRIN), KST BJ Habibie, South Tangerang, Banten, Indonesia
Search for more papers by this authorGeby Otivriyanti
Research Center for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency (BRIN), KST BJ Habibie, South Tangerang, Banten, Indonesia
Search for more papers by this authorErnie S. A. Soekotjo
Research Center for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency (BRIN), KST BJ Habibie, South Tangerang, Banten, Indonesia
Search for more papers by this authorIbnu M. Hidayatullah
Research Center of Biomass Valorization, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia
Search for more papers by this authorIntan C. Sophiana
Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia
Search for more papers by this authorNeng T. U. Culsum
Research Centre for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), KST BJ Habibie, South Tangerang, Banten, Indonesia
Search for more papers by this authorImam M. Fajri
Biomass Technology Workshop, Faculty of Industrial Technology, Institut Teknologi Bandung, Sumedang, Indonesia
Search for more papers by this authorPasymi Pasymi
Department of Chemical Engineering, Universitas Bung Hatta, Padang, Indonesia
Search for more papers by this authorCorresponding Author
Yazid Bindar
Biomass Technology Workshop, Faculty of Industrial Technology, Institut Teknologi Bandung, Sumedang, Indonesia
Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
Correspondence
Yazid Bindar, Biomass Technology Workshop, Faculty of Industrial Technology, Institut Teknologi Bandung, Sumedang 45363, Indonesia.
Email: [email protected]
Search for more papers by this authorFunding information: The authors received no financial support for the research, authorship, and/or publication of this article.
Abstract
Computational fluid dynamics (CFD) is a powerful tool to provide information on detailed turbulent flow in unit processes. For that reason, this study intends to reveal the flow structures in the horizontal pipe and biomass combustor. The simulation was aided by ANSYS Fluent employing standard - model. The results show that a greater Reynolds number generates more turbulence. The pressure drop inside the pipe is also found steeper for small pipe diameters following Fanning's correlation. The fully developed flow for the laminar regime is found in locations where the ratio of entrance length to pipe diameter complies with Hagen–Poiseuille's rule. The sucking phenomenon in jet flow is also similar to the working principle of ejector. For the biomass combustor, the average combustion temperature is 356–696°C, and the maximum flame temperature is 1587–1697°C. Subsequently, air initially flows through the burner area and then moves to the outlet when enters the combustor chamber. Not so for particle flow, the particle experiences sedimentation in the burner area and then falls as it enters the combustor chamber. This study also convinces that secondary air supply can produce more circulating effects in the combustor.
CONFLICT OF INTEREST STATEMENT
There is no conflict or competing of interest to declare.
Open Research
DATA AVAILABILITY STATEMENT
All data contained within the manuscript are available on request from the readers.
REFERENCES
- 1Bird RB, Stewart WE, Lightfoot EN. Transport Phenomena, Second Edition; 2002.
10.1115/1.1424298 Google Scholar
- 2Bindar Y. Computational Engineering on Multidimensional Turbulent Flows (Rekayasa Komputasi Aliran Turbulen Multidimensi); 2017.
- 3Bindar Y, Steven S, Hernowo P, Pasymi P, Restiawaty E. Improved operational unit process performance through three-dimensional design modifications using computational fluid dynamics method. AIP Conf Proc. 2024; 3073(1):080003. doi:10.1063/5.0199444
10.1063/5.0199444 Google Scholar
- 4Steven S, Hernowo P, Fajri IM, Pasymi P, Restiawaty E, Bindar Y. Captured three-dimensional turbulent behaviors inside cyclones using computational fluid dynamics (CFD) design method. AIP Conf Proc. 2024; 3073(1):080002. doi:10.1063/5.0199443
10.1063/5.0199443 Google Scholar
- 5Rodi W. Turbulence modeling and simulation in hydraulics: a historical review. J Hydraul Eng. 2017; 143(5):03117001. doi:10.1061/(ASCE)HY.1943-7900.0001288
- 6Argyropoulos CD, Markatos NC. Recent advances on the numerical modelling of turbulent flows. App Math Model. 2015; 39(2): 693-732. doi:10.1016/j.apm.2014.07.001
- 7Norton T, Tiwari B, Sun DW. Computational fluid dynamics in the design and analysis of thermal processes: a review of recent advances. Crit Rev Food Sci Nutr. 2013; 53(3): 251-275. doi:10.1080/10408398.2010.518256
- 8Zhang Y, Zhang D, Jiang H. Review of challenges and opportunities in turbulence modeling: a comparative analysis of data-driven machine learning approaches. J Mar Sci Eng. 2023; 11(7): 1440. doi:10.3390/jmse11071440
10.3390/jmse11071440 Google Scholar
- 9Ramli Y, Steven S, Restiawaty E, Bindar Y. Simulation study of bamboo leaves valorization to small-scale electricity and bio-silica using ASPEN PLUS. Bioenergy Res. 2022; 15(4): 1918-1926. doi:10.1007/s12155-022-10403-7
- 10Pang S. Advances in thermochemical conversion of woody biomass to energy, fuels, and chemicals. Biotechnol Adv. 2019; 37(4): 589-597. doi:10.1016/j.biotechadv.2018.11.004
- 11Lestari NA. Reduction of CO2 emission by integrated biomass gasification-solid oxide fuel cell combined with heat recovery and in-situ CO2 utilization. Evergreen. 2019; 6(3): 254-261. doi:10.5109/2349302
- 12Steven S, Restiawaty E, Bindar Y. A simulation study on rice husk to electricity and silica mini-plant: from organic Rankine cycle (ORC) study to its business and investment plan. Waste Biomass Valor. 2023; 14(5): 1787-1797. doi:10.1007/s12649-022-01957-w
- 13Wang T, Hou H, Ye Y, Rong H, Li J, Xue Y. Combustion behavior of refuse-derived fuel produced from sewage sludge and rice husk/wood sawdust using thermogravimetric and mass spectrometric analyses. J Clean Prod. 2019; 2019(222): 1-11. doi:10.1016/j.jclepro.2019.03.016
- 14Singh J, Srivastava P, Goyal D. Study of biomass Torrefaction fundamentals and properties. Evergreen. 2023; 10(1): 348-355. doi:10.5109/6781092
- 15Ghorbani A, Rahimpour HR, Ghasemi Y, Zoughi S, Rahimpour MR. A review of carbon capture and sequestration in Iran: microalgal biofixation potential in Iran. Renew Sustain Energy Rev. 2014; 35: 73-100. doi:10.1016/j.rser.2014.03.013
- 16Quispe I, Navia R, Kahhat R. Energy potential from rice husk through direct combustion and fast pyrolysis: A review. Waste Manag. 2017; 59: 200-210. doi:10.1016/j.wasman.2016.10.001
- 17Trirahayu DA, Abidin AZ, Putra RP, Putri FD, Hidayat AS, Perdana MI. Process assessment of integrated hydrogen production from by-products of cottonseed oil-based biodiesel as a circular economy approach. Hydrogen. 2023; 4(2): 272-286. doi:10.3390/hydrogen4020019
- 18Restiawaty E, Bindar Y, Syukri K, et al. Production of acid-treated-biochar and its application to remediate low concentrations of Al (III) and Ni (II) ions in the water contaminated with red mud. Biomass Conv Bioref Published online October 13. 2022; 14(12): 13045-13054. doi:10.1007/s13399-022-03338-8
10.1007/s13399-022-03338-8 Google Scholar
- 19Gheidan AAS, Wahid MBA, Chukwunonso OA, Yasin MF. Impact of internal combustion engine on energy supply and its emission reduction via sustainable fuel source. Evergreen. 2022; 9(3): 830-844. doi:10.5109/4843114
- 20Umar HA, Sulaiman SA, Majid MABA, Said MA, Gungor A, Ahmad RK. An outlook on tar abatement, carbon capture and its utilization for a clean gasification process. Evergreen. 2021; 8(4): 717-731. doi:10.5109/4742115
- 21Berisha A, Osmanaj L. Kosovo scenario for mitigation of greenhouse gas emissions from municipal waste management. Evergreen. 2021; 8(3): 509-516. doi:10.5109/4491636
- 22Syafrudin MA, Budihardjo NY, Ramadan BS. Assessment of greenhouse gases emission from integrated solid waste management in Semarang City, Central Java, Indonesia. Evergreen. 2021; 8(1): 23-35. doi:10.5109/4372257
10.5109/4372257 Google Scholar
- 23Trirahayu DA, Abidin AZ, Putra RP, Hidayat AS, Safitri E, Perdana MI. Process simulation and design considerations for biodiesel production from rubber seed oil. Fuel. 2022; 3(4): 563-579. doi:10.3390/fuels3040034
- 24Raheem AT, Aziz ARA, Zulkifli SA, et al. Combustion characteristics of a free piston engine linear generator using various fuel injection durations. Evergreen. 2023; 10(1): 594-600. doi:10.5109/6782166
10.5109/6782166 Google Scholar
- 25Rozainee M, Ngo SP, Salema AA, Tan KG. Computational fluid dynamics modeling of rice husk combustion in a fluidised bed combustor. Powder Technol. 2010; 203(2): 331-347. doi:10.1016/j.powtec.2010.05.026
- 26Kuprianov VI, Kaewklum R, Sirisomboon K, Arromdee P, Chakritthakul S. Combustion and emission characteristics of a swirling fluidized-bed combustor burning moisturized rice husk. Appl Energy. 2010; 87(9): 2899-2906. doi:10.1016/j.apenergy.2009.09.009
- 27Al-attab KA, Zainal ZA. Design and performance of a pressurized cyclone combustor (PCC) for high and low heating value gas combustion. Appl Energy. 2011; 88(4): 1084-1095. doi:10.1016/j.apenergy.2010.10.041
- 28Rozainee M, Ngo SP, Salema AA, Tan KG. Fluidized bed combustion of rice husk to produce amorphous siliceous ash. Energy Sustain Dev. 2008; 12(1): 33-42. doi:10.1016/S0973-0826(08)60417-2
- 29Chen D, Cen K, Zhuang X, et al. Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil. Combust Flame. 2022; 242:112142. doi:10.1016/j.combustflame.2022.112142
- 30Steven S, Pasymi P, Hernowo P, Restiawaty E, Bindar Y. Investigation of rice husk semi-continuous combustion in suspension furnace to produce amorphous silica in ash. Biomass Conv Bioref Published online September. 2023; 4: 1-16. doi:10.1007/s13399-023-04777-7
10.1007/s13399?023?04777?7 Google Scholar
- 31Febijanto I, Steven S, Nadirah N, et al. Municipal solid waste (MSW) reduction through incineration for electricity purposes and its environmental performance: A case study in Bantargebang, West Java, Indonesia. Evergreen. 2024; 11(1): 32-45. doi:10.5109/7172186
- 32Singh RI, Brink A, Hupa M. CFD modeling to study fluidized bed combustion and gasification. Appl Therm Eng. 2013; 52(2): 585-614. doi:10.1016/j.applthermaleng.2012.12.017
- 33Farokhi M, Birouk M, Tabet F. A computational study of a small-scale biomass burner: the influence of chemistry, turbulence and combustion sub-models. Energ Conver Manage. 2017; 143(x): 203-217. doi:10.1016/j.enconman.2017.03.086
- 34Wei J, Zhang H, Wang Y, Wen Z, Yao B, Dong J. The gas-solid flow characteristics of cyclones. Powder Technol. 2017; 308: 178-192. doi:10.1016/j.powtec.2016.11.044
- 35Chu KW, Chen J, Wang B, et al. Understand solids loading effects in a dense medium cyclone: effect of particle size by a CFD-DEM method. Powder Technol. 2017; 320: 594-609. doi:10.1016/j.powtec.2017.07.032
- 36Khalil EE. CFD history and applications. CFD Lett. 2012; 4(2): 43-46.
- 37Godase MM, Mali MS. A review paper on design, development and experimental analysis of particuler matter separator. Int J Sci Eng Res. 2017; 8(4): 167-169.
- 38Gao X, Xu F, Bao F, et al. Simulation and optimization of rice husk gasification using intrinsic reaction rate based CFD model. Renew Energy. 2019; 139: 611-620. doi:10.1016/j.renene.2019.02.108
- 39 ANSYS. ANSYS Fluent Theory Guide 2019 R3; 2019.
- 40Aguirre-Mendoza AM, Oyuela S, Espinoza-Román HG, Coronado-Hernández OE, Fuertes-Miquel VS, Paternina-Verona DA. 2D CFD modeling of rapid water filling with air valves using OpenFOAM. Water. 2021; 13(21): 3104. doi:10.3390/w13213104
10.3390/w13213104 Google Scholar
- 41Vengalis T, Mokšin V. 2D CFD simulation of dynamic heat transfer in an open-type refrigerated display cabinet. Appl Sci. 2022; 12(14): 6916. doi:10.3390/app12146916
- 42Wan K, Wang P. CFD numerical simulation analysis of small and medium caliber 90 d circular bend. In: Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE). Atlantis Press; 2013: 105-107. doi:10.2991/iccsee.2013.27
10.2991/iccsee.2013.27 Google Scholar
- 43Satish G, Kumar KA, Prasad VV, Pasha SM. Comparison of flow analysis of A sudden and gradual change of pipe diameter using fluent software. Int J Res Eng Technol. 2013; 02(12): 41-45. doi:10.15623/ijret.2013.0212006
10.15623/ijret.2013.0212006 Google Scholar
- 44Carrión-Coronel E, Ortiz P, Nanía L. Physical experimentation and 2D-CFD parametric study of flow through transverse bottom racks. Water. 2022; 14(6): 955. doi:10.3390/w14060955
10.3390/w14060955 Google Scholar
- 45Yu S, Dai H, Zhai Y, Liu M, Huai W. A comparative study on 2D CFD simulation of flow structure in an open channel with an emerged vegetation patch based on different RANS turbulence models. Water. 2022; 14(18): 2873. doi:10.3390/w14182873
- 46Blissett R, Sommerville R, Rowson N, Jones J, Laughlin B. Valorisation of rice husks using a TORBED® combustion process. Fuel Process Technol. 2017; 159: 247-255. doi:10.1016/j.fuproc.2017.01.046
- 47Steven S, Restiawaty E, Pasymi P, Fajri IM, Bindar Y. Digitalized turbulent behaviors of air and rice husk flow in a vertical suspension furnace from computational fluid dynamics simulation. Asia-Pac J Chem Eng. 2022; 17(5):e2805. doi:10.1002/apj.2805
- 48Steven S, Restiawaty E, Pasymi P, Bindar Y. Three-dimensional flow modelling of air and particle in a low-density biomass combustor chamber at various declination angles of tangential and secondary air pipes. Powder Technol. 2022; 410:117883. doi:10.1016/j.powtec.2022.117883
- 49Maitlo G, Unar IN, Mahar RB, Brohi KM. Numerical simulation of lignocellulosic biomass gasification in concentric tube entrained flow gasifier through computational fluid dynamics. Energy Explor Exploit. 2019; 37(3): 1073-1097. doi:10.1177/0144598719839760
- 50Haider A, Levenspiel O. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 1989; 58(1): 63-70. doi:10.1016/0032-5910(89)80008-7
- 51Setiadi KJJ. The utilization of biomass waste from coconut fiber to produce rich aromatic bio-oil through catalytic pyrolysis with impregnated nickel and zinc catalysts. In: AIP Conference Proceedings. Vol. 2085; 2019:020047. doi:10.1063/1.5095025
10.1063/1.5095025 Google Scholar
- 52Vesilind PA. The Rosin-Rammler particle size distribution. Resour Recover Conserv. 1980; 5(3): 275-277. doi:10.1016/0304-3967(80)90007-4
10.1016/0304-3967(80)90007-4 Google Scholar
- 53Steven S, Restiawaty E, Pasymi P, Bindar Y. Revealing flow structure of air and rice husk in the acrylic suspension furnace: simulation study and cold test experiment. Braz J Chem Eng. 2023; 40(3): 733-748. doi:10.1007/s43153-022-00274-y
- 54Speziale CG, So RMC. Turbulence Modeling and Simulation. In: Handbook of fluid dynamics. Second ed. CRC Press; 2016: 1-64. doi:10.1201/b19031-15
10.1201/b19031?15 Google Scholar
- 55Geankoplis CJ. Principles of Momentum Transfer and Applications. In: Transport Processes and Unit Operations. Third ed.; 1993: 114-118.
- 56Miller GE. Biomedical Transport Processes. In: Introduction to Biomedical Engineering. 3rd ed.; 2012: 937-993.
10.1016/B978-0-12-374979-6.00014-9 Google Scholar
- 57Dohnal M, Hájek J. Computational analysis of swirling pipe flow. Chem Eng Trans. 2016; 52: 757-762. doi:10.3303/CET1652127
10.3303/CET1652127 Google Scholar
- 58Lopez-Santana G, Kennaugh A, Keshmiri A. Experimental techniques against RANS method in a fully developed turbulent pipe flow: evolution of experimental and computational methods for the study of turbulence. Fluids. 2022; 7(78):78. doi:10.3390/fluids7020078
- 59Walas SM. Fluid Transfer Equipment. In: Chemical process equipment selection and design. 1st ed. Butterworth-Hienemann; 1990: 129-168. doi:10.1016/B978-0-08-052344-6.50014-7
10.1016/B978-0-08-052344-6.50014-7 Google Scholar
- 60Shome B. Laminarization of turbulent flow in a heated vertical finned tube. Int J Therm Sci. 2021; 159:106597. doi:10.1016/j.ijthermalsci.2020.106597
10.1016/j.ijthermalsci.2020.106597 Google Scholar
- 61Vaidya HA, Ertunç Ö, Genç B, Beyer F, Köksoy Ç, Delgado A. Numerical simulations of swirling pipe flows—decay of swirl and occurrence of vortex structures. J Phys: Conf Ser. 2011; 318(6):062022. doi:10.1088/1742-6596/318/6/062022
10.1088/1742-6596/318/6/062022 Google Scholar
- 62Pashtrapanska M, Jovanović J, Lienhart H, Durst F. Turbulence measurements in a swirling pipe flow. Exp Fluids. 2006; 41(5): 813-827. doi:10.1007/s00348-006-0206-x
10.1007/s00348-006-0206-x Google Scholar
- 63Karim MR, Bhuiyan AA, Sarhan AAR, Naser J. CFD simulation of biomass thermal conversion under air/oxy-fuel conditions in a reciprocating grate boiler. Renew Energy. 2020; 146: 1416-1428. doi:10.1016/j.renene.2019.07.068
- 64Ragland KW, Bryden KM. Suspension burning. In: Combustion Engineering. Second ed.; 2011: 411-439.
10.1201/b11548-22 Google Scholar