Efficient removal of emerging pollutant oxytetracycline by cost-effective biochar–hydroxyapatite composite
Quang Minh Tran
University of Science and Technology of Hanoi, A21 Building, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Search for more papers by this authorCorresponding Author
Phuong Thu Le
University of Science and Technology of Hanoi, A21 Building, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Correspondence
Phuong Thu Le and Thi Mai Thanh Dinh, University of Science and Technology of Hanoi, A21 Building, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
Emails: Email: [email protected] and
Email: [email protected]
Search for more papers by this authorThu Phuong Nguyen
Institute for Tropical Technology, A13 Building, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Search for more papers by this authorHong Nam Nguyen
University of Science and Technology of Hanoi, A21 Building, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Search for more papers by this authorThi Hai Do
Hanoi University of Mining and Geology, No.18 Vien Street, Duc Thang Ward, Bac Tu Liem District, Hanoi, Vietnam
Search for more papers by this authorTrung Dung Nguyen
Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi, Vietnam
Search for more papers by this authorCorresponding Author
Thi Mai Thanh Dinh
University of Science and Technology of Hanoi, A21 Building, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Correspondence
Phuong Thu Le and Thi Mai Thanh Dinh, University of Science and Technology of Hanoi, A21 Building, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
Emails: Email: [email protected] and
Email: [email protected]
Search for more papers by this authorQuang Minh Tran
University of Science and Technology of Hanoi, A21 Building, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Search for more papers by this authorCorresponding Author
Phuong Thu Le
University of Science and Technology of Hanoi, A21 Building, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Correspondence
Phuong Thu Le and Thi Mai Thanh Dinh, University of Science and Technology of Hanoi, A21 Building, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
Emails: Email: [email protected] and
Email: [email protected]
Search for more papers by this authorThu Phuong Nguyen
Institute for Tropical Technology, A13 Building, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Search for more papers by this authorHong Nam Nguyen
University of Science and Technology of Hanoi, A21 Building, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Search for more papers by this authorThi Hai Do
Hanoi University of Mining and Geology, No.18 Vien Street, Duc Thang Ward, Bac Tu Liem District, Hanoi, Vietnam
Search for more papers by this authorTrung Dung Nguyen
Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi, Vietnam
Search for more papers by this authorCorresponding Author
Thi Mai Thanh Dinh
University of Science and Technology of Hanoi, A21 Building, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Correspondence
Phuong Thu Le and Thi Mai Thanh Dinh, University of Science and Technology of Hanoi, A21 Building, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
Emails: Email: [email protected] and
Email: [email protected]
Search for more papers by this authorAbstract
Biochar (BC) and hydroxyapatite (HAp) are widely used in environmental remediation due to their high adsorption capacity, porous structure, large specific surface area, chemical stability, non-toxicity, and low solubility. Combining BC and HAp is a green and effective strategy for creating new adsorbents (BCH) that have a synergistic impact on wastewater treatment. In this study, BCH composites derived from apatite ore and macadamia nut shells were synthesized by the wet impregnation method to remove oxytetracycline (OTC) from aqueous solutions. The BC-HAp composite with a ratio of 10:1 (by weight) was the most effective material for removing OTC. The Redlich–Peterson model achieved the highest correlation coefficient among the four models tested (Freundlich, Langmuir, Temkin, and Redlich–Peterson). The maximum adsorption capacity calculated with the Langmuir isotherm was 49.59 mg g−1. It was found that the adsorption process was significantly affected by the solution pH. The bipolar form of the drug was found to be OTC±, and the adsorption was most effective in solutions with a pH of 6. The OTC adsorption dominant mechanisms on nanocomposites could be electrostatic attraction, hydrogen bonding formation, surface complexation, or ion exchange. Therefore, the BCH composite showed great potential for removing OTC pollutants in a cost-effective, and environmentally friendly manner.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data will be made available on request.
Supporting Information
Filename | Description |
---|---|
apj3124-sup-0001-Figure_S1.docxWord 2007 document , 40.7 KB |
Fig. S1 (a) UV–vis spectra and (b) calibration curve of OTC. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Kümmerer K. Pharmaceuticals in the environment: sources, fate, effects and risks. Springer; 2008. doi:10.1007/978-3-540-74664-5
10.1007/978-3-540-74664-5 Google Scholar
- 2Schwarz S, Kehrenberg C, Walsh TR. Use of antimicrobial agents in veterinary medicine and food animal production. Int J Antimicrob Agents. 2001; 17(6): 431-437. doi:10.1016/s0924-8579(01)00297-7
- 3Batt AL, Bruce IB, Aga DS. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ Pollut. 2006; 142(2): 295-302. doi:10.1016/j.envpol.2005.10.010
- 4Zhang H, Song X, Zhang J, et al. Performance and mechanism of sycamore flock based biochar in removing oxytetracycline hydrochloride. Bioresour Technol. 2022; 350:126884. doi:10.1016/j.biortech.2022.126884
- 5Larson VJ, Rico JL, Wolfe LM, Sharvelle S, Prenni J, De Long SK. Composting post-anaerobic digestion for emerging contaminant biodegradation: impacts of operating conditions. J Environ Qual. 2023; 52(6): 1152-1165. doi:10.1002/jeq2.20515
- 6Xu R, Wu Z, Zhou Z, Meng F. Removal of sulfadiazine and tetracycline in membrane bioreactors: linking pathway to microbial community shift. Environ Technol. 2019; 40(2): 134-143. doi:10.1080/09593330.2017.1380714
- 7Feng C, Lu Z, Zhang Y, et al. A magnetically recyclable dual Z-scheme GCNQDs-CoTiO3/CoFe2O4 composite photocatalyst for efficient photocatalytic degradation of oxytetracycline. Chem Eng J. 2022; 435:134833. doi:10.1016/j.cej.2022.134833
- 8Yu Y, Huang F, He Y, et al. Efficient degradation of sulfamethoxazole by catalytic wet peroxide oxidation with sludge-derived carbon as catalysts. Environ Technol. 2020; 41(7): 870-877. doi:10.1080/09593330.2018.1512657
- 9Wang M, Shen J, Xu X, Feng H, Huang D, Chen Z. Biochar as an enhancer of the stability, mesoporous structure and oxytetracycline adsorption capacity of ferrihydrite: role of the silicon component. Sci Total Environ. 2023; 875:162652. doi:10.1016/j.scitotenv.2023.162652
- 10Xie H, Pan W, Zhou Y, et al. Micro- and nano-plastics play different roles in oxytetracycline adsorption on natural zeolite: additional adsorbent and competitive adsorbate. J Environ Chem Eng. 2023; 11(2):109648. doi:10.1016/j.jece.2023.109648
- 11Akhtar J, Amin NAS, Shahzad K. A review on removal of pharmaceuticals from water by adsorption. Desalination and Water Treatment. 2016; 57(27): 12842-12860. doi:10.1080/19443994.2015.1051121
- 12al-Qahtani SD, Alhasani M, Alkhathami N, et al. Effective levofloxacin adsorption and removal from aqueous solution onto tea waste biochar; synthesis, characterization, adsorption studies, and optimization by Box–Behnken design and its antibacterial activity. Environ Technol. 2023; 0(0): 1-23. doi:10.1080/09593330.2023.2283409
- 13Li L, Li Y, Li M, et al. Adsorption of tetracycline by Nicandra physaloides (L.) Gaertn seed gum and Nicandra physaloides(L.) Gaertn seed gum/Carboxymethyl chitosan aerogel. Environ Technol. 2022; 43(27): 4237-4248. doi:10.1080/09593330.2021.1946166
- 14Ahmed MJ, Hameed BH. Removal of emerging pharmaceutical contaminants by adsorption in a fixed-bed column: a review. Ecotoxicol Environ Saf. 2018; 149: 257-266. doi:10.1016/j.ecoenv.2017.12.012
- 15Patiño Y, Díaz E, Ordóñez S, Gallegos-Suarez E, Guerrero-Ruiz A, Rodríguez-Ramos I. Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes. Chemosphere. 2015; 136: 174-180. doi:10.1016/j.chemosphere.2015.04.089
- 16Rakić V, Rac V, Krmar M, Otman O, Auroux A. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons. J Hazard Mater. 2015; 282: 141-149. doi:10.1016/j.jhazmat.2014.04.062
- 17de Ridder DJ, Verberk JQJC, Heijman SGJ, Amy GL, van Dijk JC. Zeolites for nitrosamine and pharmaceutical removal from demineralised and surface water: mechanisms and efficacy. Sep Purif Technol. 2012; 89: 71-77. doi:10.1016/j.seppur.2012.01.025
- 18Alsbaiee A, Smith BJ, Xiao L, Ling Y, Helbling DE, Dichtel WR. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature. 2016; 529(7585): 190-194. doi:10.1038/nature16185
- 19Azhar MR, Abid HR, Sun H, Periasamy V, Tadé MO, Wang S. Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. J Colloid Interface Sci. 2016; 478: 344-352. doi:10.1016/j.jcis.2016.06.032
- 20Benedini L, Placente D, Ruso J, Messina P. Adsorption/desorption study of antibiotic and anti-inflammatory drugs onto bioactive hydroxyapatite nano-rods. Mater Sci Eng C. 2019; 99: 180-190. doi:10.1016/j.msec.2019.01.098
- 21Laabd M, Brahmi Y, El Ibrahimi B, et al. A novel mesoporous Hydroxyapatite@Montmorillonite hybrid composite for high-performance removal of emerging Ciprofloxacin antibiotic from water: integrated experimental and Monte Carlo computational assessment. J Mol Liq. 2021; 338:116705. doi:10.1016/j.molliq.2021.116705
- 22Xiong T, Li Q, Liao J, Zhang Y, Zhu W. Highly enhanced adsorption performance to uranium (VI) by facile synthesized hydroxyapatite aerogel. J Hazard Mater. 2022; 423(Pt B):127184. doi:10.1016/j.jhazmat.2021.127184
- 23Chen Y, Li M, Li Y, et al. Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+: adsorption behavior and mechanisms. Bioresour Technol. 2021; 321:124413. doi:10.1016/j.biortech.2020.124413
- 24Vinayagam R, Pai S, Murugesan G, Varadavenkatesan T, Kaviyarasu K, Selvaraj R. Green synthesized hydroxyapatite nanoadsorbent for the adsorptive removal of AB113 dye for environmental applications. Environ Res. 2022; 212(Pt B):113274. doi:10.1016/j.envres.2022.113274
- 25Mossavi E, Hosseini Sabzevari M, Ghaedi M, Ahmadi Azqhandi MH. Adsorption of the azo dyes from wastewater media by a renewable nanocomposite based on the graphene sheets and hydroxyapatite/ZnO nanoparticles. J Mol Liq. 2022; 350:118568. doi:10.1016/j.molliq.2022.118568
- 26Jin Y, Ni Y, Pudukudy M, et al. Synthesis of nanocrystalline cellulose/hydroxyapatite nanocomposites for the efficient removal of chlortetracycline hydrochloride in aqueous medium. Mater Chem Phys. 2022; 275:125135. doi:10.1016/j.matchemphys.2021.125135
- 27Long Y, Jiang J, Hu J, Hu X, Yang Q, Zhou S. Removal of Pb (II) from aqueous solution by hydroxyapatite/carbon composite: preparation and adsorption behavior. Colloids Surf A Physicochem Eng Asp. 2019; 577: 471-479. doi:10.1016/j.colsurfa.2019.06.011
- 28Su M, Liu Z, Wu Y, et al. Graphene oxide functionalized with nano hydroxyapatite for the efficient removal of U (VI) from aqueous solution. Environ Pollut. 2021; 268(Pt A):115786. doi:10.1016/j.envpol.2020.115786
- 29Karthikeyan P, Elanchezhiyan SSD, Banu HAT, Hasmath Farzana M, Park CM. Hydrothermal synthesis of hydroxyapatite-reduced graphene oxide (1D–2D) hybrids with enhanced selective adsorption properties for methyl orange and hexavalent chromium from aqueous solutions. Chemosphere. 2021; 276:130200. doi:10.1016/j.chemosphere.2021.130200
- 30Li G, Zhang J, Li Y, Liu J, Yan Z. Adsorption characteristics of Pb (II), Cd (II) and Cu (II) on carbon nanotube-hydroxyapatite. Environ Technol. 2021; 42(10): 1560-1581. doi:10.1080/09593330.2019.1674385
- 31Poddar K, Sarkar D, Sahu JR, Patil PB, Pal SK, Sarkar A. Techno-economic assessment of doxycycline recovery using rice straw biochar: a circular economic execution. Chemosphere. 2023; 338:139504. doi:10.1016/j.chemosphere.2023.139504
- 32Dang BT, Gotore O, Ramaraj R, et al. Sustainability and application of corncob-derived biochar for removal of fluoroquinolones. Biomass Conv Bioref. 2022; 12(3): 913-923. doi:10.1007/s13399-020-01222-x
- 33Shi Z, Ma A, Chen Y, et al. The removal of tetracycline from aqueous solutions using peanut shell biochars prepared at different pyrolysis temperatures. Sustainability. 2023; 15(1): 874. doi:10.3390/su15010874
- 34Nguyen TKT, Nguyen TB, Chen WH, et al. Phosphoric acid-activated biochar derived from sunflower seed husk: selective antibiotic adsorption behavior and mechanism. Bioresour Technol. 2023; 371:128593. doi:10.1016/j.biortech.2023.128593
- 35Yazidi A, Atrous M, Edi Soetaredjo F, et al. Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: experimental study and modeling analysis. Chem Eng J. 2020; 379:122320. doi:10.1016/j.cej.2019.122320
- 36Wang W, Kang R, Yin Y, Tu S, Ye L. Two-step pyrolysis biochar derived from agro-waste for antibiotics removal: mechanisms and stability. Chemosphere. 2022; 292:133454. doi:10.1016/j.chemosphere.2021.133454
- 37Zhao Y, Liu X, Li W, et al. One-step synthesis of garlic peel derived biochar by concentrated sulfuric acid: enhanced adsorption capacities for Enrofloxacin and interfacial interaction mechanisms. Chemosphere. 2022; 290:133263. doi:10.1016/j.chemosphere.2021.133263
- 38Zhang X, Bhattacharya T, Wang C, Kumar A, Nidheesh PV. Straw-derived biochar for the removal of antibiotics from water: adsorption and degradation mechanisms, recent advancements and challenges. Environ Res. 2023; 237(Pt 2):116998. doi:10.1016/j.envres.2023.116998
- 39Al-Juboori RA, Bakly S, Bowtell L, Alkurdi SSA, Altaee A. Innovative capacitive deionization-degaussing approach for improving adsorption/desorption for macadamia nutshell biochar. Journal of Water Process Engineering. 2022; 47:102786. doi:10.1016/j.jwpe.2022.102786
- 40Wongcharee S, Aravinthan V, Erdei L. Mesoporous activated carbon-zeolite composite prepared from waste macadamia nut shell and synthetic faujasite. Chin J Chem Eng. 2019; 27(1): 226-236. doi:10.1016/j.cjche.2018.06.024
- 41Hasan MM, Rasul MG, Jahirul MI, Khan MMK. Fast pyrolysis of macadamia nutshell in an auger reactor: process optimization using response surface methodology (RSM) and oil characterization. Fuel. 2023; 333:126490. doi:10.1016/j.fuel.2022.126490
- 42Mo G, Gao X. Mitigation of Cd (II) contamination in aqueous solution and soil by multifunctional hydroxyapatite/sludge biochar composite. Environ Sci Pollut Res. 2023; 30(37): 87743-87756. doi:10.1007/s11356-023-28667-7
- 43Rueangchai N, Noisong P, Sansuk S. A facile synthesis of hydroxyapatite and hydroxyapatite/activated carbon composite for paracetamol and ofloxacin removal. Materials Today Communications. 2023; 34:105326. doi:10.1016/j.mtcomm.2023.105326
- 44Li Z, Li M, Che Q, Li Y, Liu X. Synergistic removal of tylosin/sulfamethoxazole and copper by nano-hydroxyapatite modified biochar. Bioresour Technol. 2019; 294:122163. doi:10.1016/j.biortech.2019.122163
- 45Linh VN, Nguyen ND, Thanh Dinh TM, Nguyen HN. Cascading use of macadamia nutshell for production of energy and adsorbents through biomass gasification. Ind Crops Prod. 2023; 206:117662. doi:10.1016/j.indcrop.2023.117662
10.1016/j.indcrop.2023.117662 Google Scholar
- 46Vu NL, Nguyen ND, Nguyen VD, et al. Evolution of properties of macadamia husk throughout gasification: Hints for a zero-waste energy production system. Biomass Bioenergy. 2023; 171:106735. doi:10.1016/j.biombioe.2023.106735
- 47Bekkali CE, Bouyarmane H, Karbane ME, et al. Zinc oxide-hydroxyapatite nanocomposite photocatalysts for the degradation of ciprofloxacin and ofloxacin antibiotics. Colloids Surf A Physicochem Eng Asp. 2018; 539: 364-370. doi:10.1016/j.colsurfa.2017.12.051
10.1016/j.colsurfa.2017.12.051 Google Scholar
- 48Phuong NT, Hong CT, Nguyen TT, et al. Research on the adsorption of Pb2+ by apatite ore and purified apatite ore. Vietnam J Sci Technol. 2021; 59(6): 745-761. doi:10.15625/2525-2518/59/6/16185
10.15625/2525-2518/59/6/16185 Google Scholar
- 49Phuong NT, Thom NT, Nam PT, et al. Co2+ and Cr3+ ions removal from wastewater by using nanostructural hydroxyapatite. Vietnam Journal of Chemistry. 2022; 60(S1): 135-147. doi:10.1002/vjch.202200072
- 50Li C, Zhang L, Gao Y, Li A. Facile synthesis of nano ZnO/ZnS modified biochar by directly pyrolyzing of zinc contaminated corn stover for Pb (II), Cu (II) and Cr (VI) removals. Waste Manag. 2018; 79: 625-637. doi:10.1016/j.wasman.2018.08.035
- 51Ayawei N, Ebelegi AN, Wankasi D. Modelling and interpretation of adsorption isotherms. J Chem. 2017; 2017:e3039817. doi:10.1155/2017/3039817
- 52Negarestani M, Reisi S, Sohrabi M, et al. In-situ growth of Al/Ni layered double hydroxide onto polyaniline-wrapped sisal fibers for highly efficient removal of pharmaceutical Ketoprofen and Ibuprofen contaminants: batch and fixed-bed column studies. Journal of Water Process Engineering. 2024; 57:104657. doi:10.1016/j.jwpe.2023.104657
- 53Kesmez Ö. Preparation of anti-bacterial biocomposite nanofibers fabricated by electrospinning method. JOTCSA. 2020; 7(1): 125-142. doi:10.18596/jotcsa.590621
- 54Bakly S, Al-Juboori RA, Bowtell L. Macadamia nutshell biochar for nitrate removal: effect of biochar preparation and process parameters. C. 2019; 5(3): 47. doi:10.3390/c5030047
- 55Yin Z, Liu N, Bian S, Li J, Xu S, Zhang Y. Enhancing the adsorption capability of areca leaf biochar for methylene blue by K2FeO4-catalyzed oxidative pyrolysis at low temperature. RSC Adv. 2019; 9(72): 42343-42350. doi:10.1039/C9RA06592J
- 56Lawrinenko M, Laird DA. Anion exchange capacity of biochar. Green Chem. 2015; 17(9): 4628-4636. doi:10.1039/C5GC00828J
- 57Mendes LC, Ribeiro GL, Marques RC. In situ hydroxyapatite synthesis: influence of collagen on its structural and morphological characteristic. Mater Sci Appl. 2012; 3(8): 580-586. doi:10.4236/msa.2012.38083
10.4236/msa.2012.38083 Google Scholar
- 58Gogoi S, Dutta RK. Fluoride removal by hydrothermally modified limestone powder using phosphoric acid. J Environ Chem Eng. 2016; 4(1): 1040-1049. doi:10.1016/j.jece.2016.01.004
- 59Nguyen HN, Nguyen PLT, Tran VB. Zero-waste biomass gasification: use of residues after gasification of bagasse pellets as CO2 adsorbents. Thermal Science and Engineering Progress. 2021; 26:101080. doi:10.1016/j.tsep.2021.101080
- 60Condon JB. Chapter 1 — An overview of physisorption. In: JB Condon, ed. Surface area and porosity determinations by physisorption. Elsevier Science; 2006: 1-27. doi:10.1016/B978-044451964-1/50003-0
10.1016/B978-044451964-1/50003-0 Google Scholar
- 61Nurazzi NM, Asyraf MRM, Rayung M, et al. Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: a review on influence of chemical treatments. Polymers. 2021; 13(16): 2710. doi:10.3390/polym13162710
- 62Harja M, Ciobanu G. Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite. Sci Total Environ. 2018; 628-629: 36-43. doi:10.1016/j.scitotenv.2018.02.027
- 63Song J, Cui N, Mao X, Huang Q, Lee ES, Jiang H. Sorption Studies of Tetracycline Antibiotics on Hydroxyapatite (001) Surface—A First-Principles Insight. Materials. 2022;15(3):797. doi:10.3390/ma15030797
- 64Luo J, Li X, Ge C, et al. Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems. Bioresource Technology. 2018;263:385-392. doi:10.1016/j.biortech.2018.05.022
- 65Chahkandi M, Zargazi M, Ahmadi A, Koushki E, Ghasedi A. In situ synthesis of holey g-C 3 N 4 nanosheets decorated by hydroxyapatite nanospheres as efficient visible light photocatalyst. RSC Advances. 2021;11(50):31174-31188. doi:10.1039/D1RA05259D
- 66Thuong HB, Phuong TL, Thu PN, et al. Removal of methylene blue from aqueous solution by biochar derived from rice husk. Vietnam Journal of Earth Sciences. 2022;44(2):273-285. doi:10.15625/2615-9783/16998
- 67Jin Y, Chen J, Zhang Q, et al. Biosurfactant-affected mobility of oxytetracycline and its variations with surface chemical heterogeneity in saturated porous media. Water Research. 2023;244:120509. doi:10.1016/j.watres.2023.120509
- 68Kadlec K, Adamska K, Voelkel A. Characterization of ceramic hydroxyapatite surface by inverse liquid chromatography in aquatic systems. Talanta. 2016;147:44-49. doi:10.1016/j.talanta.2015.09.044
- 69Gao Y, Li Y, Zhang L, et al. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. Journal of Colloid and Interface Science. 2012;368(1):540-546. doi:10.1016/j.jcis.2011.11.015
- 70Vargas AMM, Cazetta AL, Kunita MH, Silva TL, Almeida VC. Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): Study of adsorption isotherms and kinetic models. Chemical Engineering Journal. 2011;168(2):722-730. doi:10.1016/j.cej.2011.01.067
- 71Othmani M, Aissa A, Bac CG, Rachdi F, Debbabi M. Surface modification of calcium hydroxyapatite by grafting of etidronic acid. Applied Surface Science. 2013;274:151-157. doi:10.1016/j.apsusc.2013.03.002
- 72Rakshit S, Elzinga EJ, Datta R, Sarkar D. In Situ Attenuated Total Reflectance Fourier-Transform Infrared Study of Oxytetracycline Sorption on Magnetite. Journal of Environmental Quality. 2013;42(3):822-827. doi:10.2134/jeq2012.0412
- 73Şanli S, Şanli N, Alsancak G. Determination of protonation constants of some tetracycline antibiotics by potentiometry and lc methods in water and acetonitrile-water binary mixtures. J Braz Chem Soc. 2009;20:939-946. doi:10.1590/S0103-50532009000500020
- 74Li Z, Schulz L, Ackley C, Fenske N. Adsorption of tetracycline on kaolinite with pH-dependent surface charges. Journal of Colloid and Interface Science. 2010;351(1):254-260. doi:10.1016/j.jcis.2010.07.034
- 75Bengtsson Å, Sjöberg S. Surface complexation and proton-promoted dissolution in aqueous apatite systems. Pure and Applied Chemistry. 2009;81(9):1569-1584. doi:10.1351/PAC-CON-08-10-02
- 76Eniola JO, Kumar R, Al-Rashdi AA, Barakat MA. Hydrothermal synthesis of structurally variable binary CuAl, MnAl and ternary CuMnAl hydroxides for oxytetracycline antibiotic adsorption. Journal of Environmental Chemical Engineering. 2020;8(2):103535. doi:10.1016/j.jece.2019.103535
- 77Saman N, Othman NS, Chew LY, Mohd Setapar SH, Mat H. Cetyltrimethylammonium bromide functionalized silica nanoparticles (MSN) synthesis using a combined sol-gel and adsorption steps with enhanced adsorption performance of oxytetracycline in aqueous solution. Journal of the Taiwan Institute of Chemical Engineers. 2020;112:67-77. doi:10.1016/j.jtice.2020.07.008
- 78Tian G, Wang W, Zong L, Kang Y, Wang A. A functionalized hybrid silicate adsorbent derived from naturally abundant low-grade palygorskite clay for highly efficient removal of hazardous antibiotics. Chemical Engineering Journal. 2016;293:376-385. doi:10.1016/j.cej.2016.02.035
- 79Yuan L, Yan M, Huang Z, et al. Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution. Journal of Colloid and Interface Science. 2019;541:101-113. doi:10.1016/j.jcis.2019.01.078
- 80K LS. About the Theory of So-called Adsorption of Soluble Substances. Sven Vetenskapsakad Handingarl. 1898;24:1-39.
- 81Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochemistry. 1999;34(5):451-465. doi:10.1016/S0032-9592(98)00112-5
- 82Largitte L, Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design. 2016;109:495-504. doi:10.1016/j.cherd.2016.02.006
- 83Weber WJ, Morris JC. Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division. 1963;89(2):31-59. doi:10.1061/JSEDAI.0000430
- 84Kajjumba GW, Emik S, Öngen A, et al. Modelling of Adsorption Kinetic Processes—Errors, Theory and Application. In: Advanced Sorption Process Applications. IntechOpen; 2018. doi:10.5772/intechopen.80495
- 85Tiwari M, Shukla S, Kisku G. Linear and Non-Linear Kinetic Modeling for Adsorption of Disperse Dye in Batch Process. Research Journal of Environmental Toxicology. 2015;9. doi:10.3923/rjet.2015.320.331
- 86Shayesteh H, Rahbar-Kelishami A, Norouzbeigi R. Evaluation of natural and cationic surfactant modified pumice for congo red removal in batch mode: Kinetic, equilibrium, and thermodynamic studies. Journal of Molecular Liquids. 2016;221:1-11. doi:10.1016/j.molliq.2016.05.053
- 87Andrade CA, Zambrano-Intriago LA, Oliveira NS, Vieira JS, Quiroz-Fernández LS, Rodríguez-Díaz JM. Adsorption Behavior and Mechanism of Oxytetracycline on Rice Husk Ash: Kinetics, Equilibrium, and Thermodynamics of the Process. Water Air Soil Pollut. 2020;231(3):103. doi:10.1007/s11270-020-04473-6
- 88Sobierajska P, Nowak N, Rewak-Soroczynska J, et al. Investigation of topography effect on antibacterial properties and biocompatibility of nanohydroxyapatites activated with zinc and copper ions: In vitro study of colloids, hydrogel scaffolds and pellets. Biomaterials Advances. 2022;134:112547. doi:10.1016/j.msec.2021.112547
- 89Xin Y, Shirai T. Noble-metal-free hydroxyapatite activated by facile mechanochemical treatment towards highly-efficient catalytic oxidation of volatile organic compound. Sci Rep. 2021;11(1):7512. doi:10.1038/s41598-021-86992-8
- 90Saeed AAH, Harun NY, Sufian S, et al. Pristine and Magnetic Kenaf Fiber Biochar for Cd2+ Adsorption from Aqueous Solution. International Journal of Environmental Research and Public Health. 2021;18(15):7949. doi:10.3390/ijerph18157949
- 91Luo H, Liu Y, Lu H, Fang Q, Rong H. Efficient Adsorption of Tetracycline from Aqueous Solutions by Modified Alginate Beads after the Removal of Cu(II) Ions. ACS Omega. 2021;6(9):6240-6251. doi:10.1021/acsomega.0c05807
- 92Hongsawat P, Prarat P. Comparative adsorption performance of oxytetracycline and sulfamethoxazole antibiotic on powder activated carbon and graphene oxide. Chem Pap. 2022;76(4):2293-2305. doi:10.1007/s11696-021-02024-9
- 93Hosny M, Fawzy M, Eltaweil AS. Green synthesis of bimetallic Ag/ZnO@Biohar nanocomposite for photocatalytic degradation of tetracycline, antibacterial and antioxidant activities. Sci Rep. 2022;12(1):7316. doi:10.1038/s41598-022-11014-0
- 94Quinn LA, Tang HH. Antioxidant properties of phenolic compounds in macadamia nuts. J Am Oil Chem Soc. 1996;73(11):1585-1588. doi:10.1007/BF02523529
- 95Li Y, Zhang Y, Zhang Y, et al. Reed biochar supported hydroxyapatite nanocomposite: Characterization and reactivity for methylene blue removal from aqueous media. Journal of Molecular Liquids. 2018;263:53-63. doi:10.1016/j.molliq.2018.04.132
- 96Jia W, Pan X, Song J, et al. Adsorption Characteristics and Mechanisms of Oxytetracycline on Nano Biochar: Effects of Environmental Conditions and Particle Aggregation. Water Air Soil Pollut. 2023;234(10):616. doi:10.1007/s11270-023-06633-w
- 97Weerasooriyagedara M, Ashiq A, Gunatilake SR, Giannakoudakis DA, Vithanage M. Surface interactions of oxytetracycline on municipal solid waste-derived biochar–montmorillonite composite. Ok YS, ed. Sustainable Environment. 2022;8(1):2046324. doi:10.1080/27658511.2022.2046324
- 98Martínez-Olivas A, Torres-Pérez J, Balderas-Hernández P, Reyes-López SY. Oxytetracycline Sorption onto Synthetized Materials from Hydroxyapatite and Aluminosilicates. Water Air Soil Pollut. 2020;231(6):264. doi:10.1007/s11270-020-04638-3
- 99Song X, Liu D, Zhang G, Frigon M, Meng X, Li K. Adsorption mechanisms and the effect of oxytetracycline on activated sludge. Bioresource Technology. 2014;151:428-431. doi:10.1016/j.biortech.2013.10.055
- 100Liang G, Wang Z, Yang X, et al. Efficient removal of oxytetracycline from aqueous solution using magnetic montmorillonite-biochar composite prepared by one step pyrolysis. Science of The Total Environment. 2019;695:133800. doi:10.1016/j.scitotenv.2019.133800
- 101Jia M, Wang F, Bian Y, et al. Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresource Technology. 2013;136:87-93. doi:10.1016/j.biortech.2013.02.098
- 102Song Y, Sackey EA, Wang H, Wang H. Adsorption of oxytetracycline on kaolinite. PLOS ONE. 2019;14(11):e0225335. doi:10.1371/journal.pone.0225335
- 103Li Y ni, Hu Y yun, Ding L, Zhou D bing, Chen W jun. Detection of tetracycline antibiotics in water by dispersive micro-solid phase extraction using Fe3O4@[Cu3(btc)2] magnetic composite combined with liquid chromatography-tandem mass spectrometry. Chinese Journal of Chemical Physics. 2021;34(2):238-248. doi:10.1063/1674-0068/cjcp2004046
- 104Lye JWP, Saman N, Sharuddin SSN, et al. Removal Performance of Tetracycline and Oxytetracycline From Aqueous Solution Via Natural Zeolites: An Equilibrium and Kinetic Study. CLEAN – Soil, Air, Water. 2017;45(10):1600260. doi:10.1002/clen.201600260