Esterification of tripalmitin using calcined scallop shell as a heterogeneous basic catalyst
Corresponding Author
Hideo Maruyama
Division of Marine Biosciences, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
Correspondence
Hideo Maruyama, Division of Marine Biosciences, Graduate School of Fisheries Sciences, Hokkaido University, Minato 3-1-1, Hakodate 041-8611, Japan.
Email: [email protected]
Search for more papers by this authorHideshi Seki
Division of Marine Biosciences, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
Search for more papers by this authorCorresponding Author
Hideo Maruyama
Division of Marine Biosciences, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
Correspondence
Hideo Maruyama, Division of Marine Biosciences, Graduate School of Fisheries Sciences, Hokkaido University, Minato 3-1-1, Hakodate 041-8611, Japan.
Email: [email protected]
Search for more papers by this authorHideshi Seki
Division of Marine Biosciences, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
Search for more papers by this authorAbstract
Calcined waste scallop shell (Patinopecten yessoensis) was used as a basic heterogeneous solid catalyst for the transesterification of tripalmitin as a model triglyceride for assuming biodiesel production. The scallop shell was pulverized and calcined at 900 and 1000°C for 4 h. Calcined reagent calcium carbonate was also used as a control catalyst. The transesterification experiments were carried out at 30°C with varying catalyst dosage and calcination conditions. In the most experimental condition, the yield reached ~90% within 8–10 h. The overall reaction rate constant, k, was determined by simple first-order reaction kinetics. The calcined catalyst was characterized using SEM, EDS, and XRD analysis. The number of basic active sites on the surface was determined by titration with benzoic acid. A linear relationship between k and the number of the basic active sites was obtained. The time course of the concentration of the products could be estimated using this relationship.
CONFLICT OF INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
REFERENCES
- 1Ma F, Hanna MA. Biodiesel production: a review. Bioresour Technol. 1999; 70(1): 1-15. doi:10.1016/S0960-8524(99)00025-5
- 2Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils. J Biosci Bioeng. 2001; 92(5): 405-416. doi:10.1016/S1389-1723(01)80288-7
- 3Leung DYC, Wu X, Leung MKH. A review on biodiesel production using catalyzed transesterification. Appl Energy. 2010; 87(4): 1083-1095. doi:10.1016/j.apenergy.2009.10.006
- 4Bashir MA, Wu S, Zhu J, Krosuri A, Khan MU, Aka RJN. Recent development of advanced processing technologies for biodiesel production: a critical review. Fuel Process Technol. 2022; 227:107120. doi:10.1016/j.fuproc.2021.107120
- 5Panchal B, Zhu Z, Qin S, et al. The current state applications of ethyl carbonate with ionic liquid in sustainable biodiesel production: a review. Renew Energy. 2022; 181: 341-354. doi:10.1016/j.renene.2021.09.062
- 6Maroa S, Inambao F. A review of sustainable biodiesel production using biomass derived heterogeneous catalysts. Eng Life Sci. 2021; 21(12): 790-824. doi:10.1002/elsc.202100025
- 7Ramos M, Soares Dias AP, Puna JF, Gomes J, Bordado JC. Biodiesel production processes and sustainable raw materials. Enegies. 2019; 12(23): 4408. doi:10.3390/en12234408
- 8Zhang Y, Dube MA, Mclean DD, Kates M. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour Technol. 2003; 89(1): 1-16. doi:10.1016/S0960-8524(03)00040-3
- 9Kulkarni MG, Dalai AK. Waste cooking oil-an economical source for biodiesel: a review. Ind Eng Chem Res. 2006; 45(9): 2901-2913. doi:10.1021/ie0510526
- 10Talebian-Kiakalaieh A, Amin NAS, Mazaheri S. A review on novel processes of biodiesel production from waste cooking oil. Appl Energy. 2013; 104: 683-710. doi:10.1016/j.apenergy.2012.11.061
- 11Singh SP, Singh D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sustain Energy Rev. 2010; 14(1): 200-216. doi:10.1016/j.rser.2009.07.017
- 12Agarwal AK. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science. 2007; 33(3): 233-271. doi:10.1016/j.pecs.2006.08.003
- 13Achten WMJ, Verchot L, Franken YJ, et al. Jatropha bio-diesel production and use. Biomass Bioenergy. 2008; 32(12): 1063-1084. doi:10.1016/j.biombioe.2008.03.003
- 14Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ. Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed. 2011; 50(17): 3854-3871. doi:10.1002/anie.201002767
- 15Mukhtar A, Saqib S, Lin H, et al. Current status and challenges in the heterogeneous catalysis for biodiesel production. Renew Sustain Energy Rev. 2022; 157:112012. doi:10.1016/j.rser.2021.112012
- 16Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010; 14(1): 217-232. doi:10.1016/j.rser.2009.07.020
- 17Santos FFP, Malveira JQ, Cruz MGA, Fernandes FAN. Production of biodiesel by ultrasound assisted esterification of Oreochromis niloticus oil. Fuel. 2010; 89(2): 275-279. doi:10.1016/j.fuel.2009.05.030
- 18Yahyaee R, Ghobadian B, Najafi G. Waste fish oil biodiesel as a source of renewable fuel in Iran. Renew Sustain Energy Rev. 2013; 17: 312-319. doi:10.1016/j.rser.2012.09.025
- 19Catarino M, Ramos M, Dias APS, Santos MT, Puna JF, Gomes JF. Calcium rich food wastes based catalysts for biodiesel production. Waste and Biomass Valorization. 2017; 8(5): 1699-1707. doi:10.1007/s12649-017-9988-8
- 20Yukirari T, Furukawa A, Ohnishi K, Kurosaki Y, Maruyama H, Seki H. Fundamental study of transesterification catalyzed by calcinated shell. The Proceedings of the Muroran Meeting of the Society of Chemical Engineering of Japan. 2018;B122.
- 21Tanabe K, Hölderich WF. Industrial application of solid acid–base catalysts. Appl Catal A-Gen. 1999; 181(2): 399-434. doi:10.1016/S0926-860X(98)00397-4
- 22Di Serio M, Cozzolino M, Giordano M, Tesser R, Patrono P, Santacesaria E. From homogeneous to heterogeneous catalysts in biodiesel production. Ind Eng Chem Res. 2007; 46(20): 6379-6384. doi:10.1021/ie070663q
- 23Di Serio M, Tesser R, Pengmei L, Santacesaria E. Heterogeneous catalysts for biodiesel production. Energy Fuel. 2008; 22(1): 207-217. doi:10.1021/ef700250g
- 24Jothiramalingam R, Wang MK. Review of recent developments in solid acid, base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification. Ind Eng Chem Res. 2009; 48(13): 6162-6172. doi:10.1021/ie801872t
- 25Schwab AW, Bagby MO, Freedman B. Preparation and properties of diesel fuels from vegetable oils. Fuel. 1987; 66(10): 1372-1378. doi:10.1016/0016-2361(87)90184-0
- 26Esipovich A, Danov S, Belousov A, Rogozhin A. Improving methods of CaO transesterification activity. J Mol Catal a Chem. 2014; 395: 225-233. doi:10.1016/j.molcata.2014.08.011
- 27Nakatani N, Takamori H, Takeda K, Sakugawa H. Transesterification of soybean oil using combusted oyster shell waste as a catalyst. Bioresour Technol. 2009; 100(3): 1510-1513. doi:10.1016/j.biortech.2008.09.007
- 28Viriya-empikul N, Krasae P, Puttasawat B, Yoosuk B, Chollacoop N, Faungnawakij K. Waste shells of mollusk and egg as biodiesel production catalysts. Bioresour Technol. 2010; 101(10): 3765-3767. doi:10.1016/j.biortech.2009.12.079
- 29Roschat W, Kacha M, Yoosuk B, Sudyoadsuk T, Promarak V. Biodiesel production based on heterogeneous process catalyzed by solid waste coral fragment. Fuel. 2012; 98: 194-202. doi:10.1016/j.fuel.2012.04.009
- 30Sirisomboonchai S, Abuduwayiti M, Guan G, et al. Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energ Conver Manage. 2015; 95: 242-247. doi:10.1016/j.enconman.2015.02.044
- 31Chaihad N, Kurnia I, Yoshida A, et al. Catalytic pyrolysis of wasted fishing net over calcined scallop shells: analytical Py-GC/MS study. J Anal Appl Pyrolysis. 2020; 146:104750. doi:10.1016/j.jaap.2019.104750
- 32Syazwani ON, Teo SH, Islam A, Taufiq-Yap YH. Transesterification activity and characterization of natural CaO derived from waste venus clam (Tapes belcheri S.) material for enhancement of biodiesel production. Process Safety and Environmental Protection. 2017; 105: 303-315. doi:10.1016/j.psep.2016.11.011
- 33Girish N, Niju SP, Begum KMMS, Anantharaman N. Utilization of a cost effective solid catalyst derived from natural white bivalve clam shell for transesterification of waste frying oil. Fuel. 2013; 111: 653-658. doi:10.1016/j.fuel.2013.03.069
- 34Buasri A, Chaiyut N, Loryuenyong V, Worawanitchaphong P, Trongyong S. Calcium oxide derived from waste shells of mussel, cockle, and scallop as the heterogeneous catalyst for biodiesel production. Sci World J. 2013; 2013:460923. doi:10.1155/2013/460923
- 35Niju S, Rabia R, Sumithra Devi K, Naveen Kumar M, Balajii M. Modified Malleus malleus shells for biodiesel production from waste cooking oil: an optimization study using box–Behnken design. Waste Biomass Valorization. 2020; 11(3): 793-806. doi:10.1007/s12649-018-0520-6
- 36Niju S, Anushya C, Balajii M. Process optimization for biodiesel production from Moringa oleifera oil using conch shells as heterogeneous catalyst. Environmental Progress & Sustainable Energy. 2019; 38(3):e13015. doi:10.1002/ep.13015
- 37Iizuka T, Hattori H, Ohno Y, Sohma J, Tanabe K. Basic sites and reducing sites of calcium oxide and their catalytic activities. Journal of Catalysis. 1971; 22(1): 130-139. doi:10.1016/0021-9517(71)90273-9
- 38Benesei H. Acidity of catalyst surfaces. II. Amine titration using Hammett indicators. J Phys Chem. 1957; 61(7): 970-973. doi:10.1021/j150553a030
- 39Teo SH, Taufiq-Yap YH, Rashid U, Islam A. Hydrothermal effect on synthesis, characterization and catalytic properties of calcium methoxide for biodiesel production from crude Jatropha curcas. RSC Advances. 2015; 5(6): 4266-4276. doi:10.1039/c4ra11936c
- 40Aydin G, Kalemtas A. Antibacterial properties of scallop shell derived calcium hydroxide powders. Mater Sci Res India. 2021; 18(1): 56-65. doi:10.13005/msri/180107
- 41Boey PL, Maniam GP, Hamid SA, Ali DMH. Utilization of waste cockle shell (Anadara granosa) in biodiesel production from palm olein: optimization using response surface methodology. Fuel. 2011; 90(7): 2353-2358. doi:10.1016/j.fuel.2011.03.002
- 42Arai Y, Yasue T, Wakui Y. Methoxidation of calcium hydroxide and characteristics of its compound. Nippon Kagaku Kaishi. 1981; 1981(9): 1402-1408. doi:10.1246/nikkashi.1981.1402
10.1246/nikkashi.1981.1402 Google Scholar
- 43Gryglewicz S. Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresour Technol. 1999; 70(3): 249-253. doi:10.1016/S0960-8524(99)00042-5
- 44Reddy CRV, Oshel R, Verkade JG. Room-temperature conversion of soybean oil and poultry fat to biodiesel catalyzed by nanocrystalline calcium oxides. Energy Fuel. 2006; 20(3): 1310-1314. doi:10.1021/ef050435d
- 45Kouzu M, Kasuno T, Tajika M, Yamanaka S, Hidaka J. Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol. Applied Catalysis a: General. 2008; 334(1-2): 357-365. doi:10.1016/j.apcata.2007.10.023
- 46Catarino M, Martins S, Soares Dias AP, Costa Pereira MF, Gomes J. Calcium diglyceroxide as a catalyst for biodiesel production. J Environ Chem Eng. 2019; 7(3):103099. doi:10.1016/j.jece.2019.103099
- 47Schächter Y, Pines H. Calcium-oxide-catalyzed reactions of hydrocarbons and of alcohols. J Catal. 1968; 11(2): 147-158. doi:10.1016/0021-9517(68)90022-5
- 48Tsuji H, Yagi F, Hattori H, Kita H. Self-condensation of n-butyraldehyde over solid base catalysts. J Catal. 1994; 148(2): 759-770. doi:10.1006/jcat.1994.1262
- 49Gryglewicz S. Alkaline-earth metal compounds as alcoholysis catalysts for ester oils synthesis. Applied Catalysis a: General. 2000; 192(1): 23-28. doi:10.1016/S0926-860X(99)00337-3
- 50Dossin TF, Reyniers MF, Marin GB. Kinetics of heterogeneously MgO-catalyzed transesterification. Appl Catal B. 2006; 62(1-2): 35-45. doi:10.1016/j.apcatb.2005.04.005
- 51Liu X, He H, Wang Y, Zhu S. Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catal Commun. 2007; 8(7): 1107-1111. doi:10.1016/j.catcom.2006.10.026
- 52Liu X, Piao X, Wang Y, Zhu S, He H. Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol. Fuel. 2008; 87(7): 1076-1082. doi:10.1016/j.fuel.2007.05.059