A stable pillared metal–organic framework constructed by H4TCPP ligand as luminescent sensor for selective detection of TNP and Fe3+ ions
Yu Ye
State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorLibo Sun
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorChenghui Zhang
State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorJianfeng Du
State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorYuchuan Liu
State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorCorresponding Author
Xiaowei Song
State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Correspondence
Xiaowei Song, State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Email: [email protected]
Zhiqiang Liang, State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Zhiqiang Liang
State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Correspondence
Xiaowei Song, State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Email: [email protected]
Zhiqiang Liang, State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Email: [email protected]
Search for more papers by this authorYu Ye
State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorLibo Sun
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorChenghui Zhang
State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorJianfeng Du
State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorYuchuan Liu
State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorCorresponding Author
Xiaowei Song
State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Correspondence
Xiaowei Song, State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Email: [email protected]
Zhiqiang Liang, State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Zhiqiang Liang
State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Correspondence
Xiaowei Song, State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Email: [email protected]
Zhiqiang Liang, State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Email: [email protected]
Search for more papers by this authorFunding information: 111 project of the Ministry of Education of China, Grant/Award Number: B17020; Ministry of Education of China, Grant/Award Number: B17020; National Natural Science Foundation of China, Grant/Award Numbers: 21471064, 21621001, 21871104
Abstract
A novel luminescent metal–organic framework (Zn-TCPP/BPY) with pillared structure based on 2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine (H4TCPP) and 4,4′-bipyridine (BPY) has been designed and synthesized through a solvothermal reaction. The [Zn2(COO)4] paddlewheel units are linked by TCPP4− ligands to form two-dimensional layers and further connected by BPY ligands as pillars to construct the twofold interpenetrating three-dimensional framework. Interestingly, Zn-TCPP/BPY possesses outstanding stability in organic solvents and water as well as maintains its structural rigidity in aqueous solutions of different pH values (3–12). After activation, Zn-TCPP/BPY possesses permanent porosity with Brunauer–Emmett–Teller surface area of 630 m2 g–1. Remarkably, Zn-TCPP/BPY displays excellent fluorescent property in virtue of the aggregation-induced emission effect of the H4TCPP ligand, which can be highly active and quenched by small amounts of 2,4,6-trinitrophenol (TNP) and Fe3+ ions. Furthermore, the detection effect of Zn-TCPP/BPY remains basically the same even after five cycles. The excellent stability, high sensitivity, and recyclability of Zn-TCPP/BPY make it an outstanding chemical sensor for detecting TNP and Fe3+ ions.
CONFLICT OF INTEREST
There are no conflicts to declare.
Supporting Information
Filename | Description |
---|---|
aoc5243-sup-0001-Supp Material.docxWord 2007 document , 2.7 MB |
TABLE S1. Crystal data and structure optimization data for Zn-TCPP/BPY. BPY, 4,4′-bipyridine TABLE S2. Selected bond lengths [Å] and angles [°] for Zn-TCPP/BPY. BPY, 4,4′-bipyridine FIGURE S1. Representation of the asymmetric unit of Zn-TCPP/BPY showing ellipsoid at the 10% probability level. BPY, 4,4′-bipyridine FIGURE S2. (a and b) Dinuclear Zn SBU and organic ligand viewed as a pair of 4-c nodes; (c and d) the three-dimensional (3D) framework of Zn-TCPP/BPY; (e and f) Space-filling view of the pillared-paddlewheel Zn-TCPP/BPY (e) and two-fold interpenetrating Zn-TCPP/BPY (f). BPY, 4,4′-bipyridine FIGURE S3. Powder X-ray diffraction patterns of Zn-TCPP/BPY (as-synthesized, simulated, activated and after five cycles for Fe3+/TNP test). BPY, 4,4′-bipyridine; TNP, trinitrophenol FIGURE S4. Infrared (IR) spectra of H4TCPP, BPY, and Zn-TCPP/BPY. BPY, 4,4′-bipyridine FIGURE S5. Powder X-ray diffraction patterns of simulated and experimental samples of Zn-TCPP/BPY before and after immersed in organic solvents or aqueous solution for 3 day. BPY, 4,4′-bipyridine FIGURE S6. Thermogravimetric analysis curves for the as-synthesized and activated Zn-TCPP/BPY. BPY, 4,4′-bipyridine FIGURE S7. Virial fitting for CO2 isotherms of Zn-TCPP/BPY. BPY, 4,4′-bipyridine FIGURE S8. Isosteric heats of CO2 adsorption for Zn-TCPP/BPY. BPY, 4,4′-bipyridine FIGURE S9. Luminescent properties of Zn-TCPP/BPY. BPY, 4,4′-bipyridine FIGURE S10. Fluorescent titrations of Zn-TCPP/BPY dispersed in ethanol solution with the addition of different nitroaromatic compounds (33.8 μM) in ethanol. BPY, 4,4′-bipyridine FIGURE S11. Fluorescent titrations of Zn-TCPP/BPY dispersed in aqueous solution with the addition of different metal ions (82.5 μM) in water. BPY, 4,4′-bipyridine FIGURE S12. (a) Fluorescence spectra of the ligands in different concentrations of TNP in ethanol (EtOH) and its corresponding quenching efficiencies (b). FIGURE S13. Fluorescent titrations of Zn-TCPP/BPY dispersed in ethanol solution with the addition of TNP (33.8 μM) in ethanol. BPY, 4,4′-bipyridine; TNP, trinitrophenol FIGURE S14. Fluorescent titrations of Zn-TCPP/BPY dispersed in aqueous solution with the addition of Fe3+ (82.5 μM) in aqueous solution. BPY, 4,4′-bipyridine FIGURE S15. Emission spectra of Zn-TCPP/BPY in ethanol (EtOH) and absorption spectra of EtOH solutions of various nitro explosives. BPY, 4,4′-bipyridine FIGURE S16. UV–Vis absorption spectra of metal ions and Zn-TCPP/BPY in H2O. BPY, 4,4′-bipyridine |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1M. O'Keeffe, O. M. Yaghi, Chem. Rev. 2011, 112, 675.
- 2L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105.
- 3L. J. Murray, M. Dincă, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294.
- 4Y. B. He, W. Zhou, G. D. Qian, B. L. Chen, Chem. Soc. Rev. 2014, 43, 5657.
- 5M. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim, Chem. Rev. 2012, 112, 782.
- 6B. van de Voorde, B. Bueken, J. Denayer, D. De Vos, Chem. Soc. Rev. 2014, 43, 5766.
- 7J. M. Zhou, W. Shi, N. Xu, P. Cheng, Inorg. Chem. 2013, 52, 8082.
- 8X. J. Zhang, W. J. Wang, Z. J. Hu, G. N. Wang, K. Uvdal, Coord. Chem. Rev. 2015, 284, 206.
- 9S. Y. Wu, H. Min, W. Shi, P. Cheng, Adv. Mater. 2019, xx. 1805871
- 10L. V. Meyer, F. Schönfeld, K. Müller-Buschbaum, Chem. Commun. 2014, 50, 8093.
- 11H. T. Feng, X. Y. Zheng, X. G. Gu, M. Chen, J. W. Y. Lam, X. H. Huang, B. Z. Tang, Chem. Mater. 2018, 30, 1285.
- 12L. Zhu, X. Q. Liu, H. L. Jiang, L. B. Sun, Chem. Rev. 2017, 117, 8129.
- 13S. N. Zhao, X. Z. Song, S. Y. Song, H. J. Zhang, Coordin. Chem. Rev. 2017, 337, 80.
- 14P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur, R. Gref, Nat. Mater. 2010, 9, 172.
- 15H. Wang, W. P. Lustig, J. Li, Chem. Soc. Rev. 2018, 47, 4729.
- 16R. W. Huang, Y. S. Wei, X. Y. Dong, X. H. Wu, C. X. Du, S. Q. Zang, T. C. W. Mak, Nat. Chem. 2017, 9, 689.
- 17Y. Q. Xiao, Y. J. Cui, Q. Zheng, S. C. Xiang, G. D. Qian, B. L. Chen, Chem. Commun. 2010, 46, 5503.
- 18L. H. Cao, F. Shi, W. M. Zhang, S. Q. Zang, T. C. W. Mak, Chem. – Eur. J. 2015, 21, 15705.
- 19X. Y. Dong, R. Wang, J. Z. Wang, S. Q. Zang, T. C. W. Mak, J. Mater. Chem. C 2015, 3, 641.
- 20R. Wang, X. Y. Dong, H. Xu, R. B. Pei, M. L. Ma, S. Q. Zang, H. W. Hou, T. C. W. Mak, Chem. Commun. 2014, 50, 9153.
- 21F. Y. Yi, S. C. Wang, M. L. Gu, J. Q. Zheng, L. Han, J. Mater. Chem. C 2018, 6, 2010.
- 22C. H. Zhang, Y. C. Liu, L. B. Sun, H. Z. Shi, C. Shi, Z. Q. Liang, J. Y. Li, Chem. – Eur. J. 2018, 24, 2718.
- 23C. H. Zhang, L. B. Sun, Y. Yan, Y. C. Liu, Z. Q. Liang, Y. L. Liu, J. Y. Li, J. Mater. Chem. C 2017, 5, 2084.
- 24D. M. Chen, N. N. Zhang, C. S. Liu, M. Du, J. Mater. Chem. C 2017, 5, 2311.
- 25R. B. Fu, S. M. Hu, X. Wu, J. Mater. Chem. A 2017, 5, 1952.
- 26L. L. Wen, X. G. Hou, G. G. Shan, W. L. Song, S. R. Zhang, H. Z. Sun, Z. M. Su, J. Mater. Chem. C 2017, 5, 10847.
- 27C. Q. Zhang, Y. Yan, L. B. Sun, Z. Q. Liang, J. Y. Li, CrystEngComm 2016, 18, 4102.
- 28J. J. Low, A. I. Benin, P. Jakubczak, J. F. Abrahamian, S. A. Faheem, R. R. Willis, J. Am. Chem. Soc. 2009, 131, 15834.
- 29O. Karagiaridi, W. Bury, D. Fairen-Jimenez, C. E. Wilmer, A. A. Sarjeant, J. T. Hupp, O. K. Farha, Inorg. Chem. 2014, 53, 10432.
- 30A. P. Nelson, O. K. Farha, K. L. Mulfort, J. T. Hupp, J. Am. Chem. Soc. 2008, 131, 458.
- 31J. R. Karra, H. Jasuja, Y. G. Huang, K. S. Walton, J. Mater. Chem. A 2015, 3, 1624.
- 32K. Tan, N. Nijem, P. Canepa, Q. H. Gong, J. Li, T. Thonhauser, Y. J. Chabal, Chem. Mater. 2012, 24, 3153.
- 33Z. J. Liang, M. Marshall, A. L. Chaffee, Microporous Mesoporous Mater. 2010, 132, 305.
- 34B. Wang, X. L. Lv, D. W. Feng, L. H. Xie, J. Zhang, M. Li, Y. B. Xie, J. R. Li, H. C. Zhou, J. Am. Chem. Soc. 2016, 138, 6204.
- 35Y. T. Yan, J. Liu, G. P. Yang, F. Zhang, Y. K. Fan, W. Y. Zhang, Y. Y. Wang, CrystEngComm 2018, 20, 477.
- 36Y. Y. Jiang, L. B. Sun, J. F. Du, Y. C. Liu, H. Z. Shi, Z. Q. Liang, J. Y. Li, Cryst. Growth des. 2017, 17, 2090.
- 37M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. Houk, Chem. Soc. Rev. 2009, 38, 1330.
- 38Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2012, 112, 1126.
- 39O. K. Farha, J. T. Hupp, Acc. Chem. Res. 2010, 43, 1166.
- 40D. Y. Ma, Y. W. Li, Z. Li, Chem. Commun. 2011, 47, 7377.
- 41J. Yang, A. Grzech, F. M. Mulder, T. J. Dingemans, Chem. Commun. 2011, 47, 5244.
- 42O. K. Farha, C. D. Malliakas, M. G. Kanatzidis, J. T. Hupp, J. Am. Chem. Soc. 2010, 132, 950.
- 43B. Liu, S. Yao, C. Shi, G. H. Li, Q. S. Huo, Y. L. Liu, Chem. Commun. 2016, 52, 3223.
- 44Z. C. Hu, B. J. Deibert, J. Li, Chem. Soc. Rev. 2014, 43, 5815.
- 45W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li, S. K. Ghosh, Chem. Soc. Rev. 2017, 46, 3242.
- 46M. Arici, Cryst. Growth des. 2017, 17, 5499.
- 47H. M. He, S. H. Chen, D. Y. Zhang, R. Hao, C. Zhang, E. C. Yang, X. J. Zhao, Dalton Trans. 2017, 46, 13502.
- 48J. T. Li, X. L. Luo, Y. Zhou, L. R. Zhang, Q. S. Huo, Y. L. Liu, Cryst. Growth des. 2018, 18, 1857.
- 49R. Goswami, S. C. Mandal, B. Pathak, S. Neogi, ACS Appl. Mater. Interfaces 2019, 11, 9042.
- 50S. Senthilkumar, R. Goswami, N. L. Obasi, S. Neogi, ACS Sustainable Chem. Eng. 2017, 5, 11307.
- 51S. Senthilkumar, R. Goswami, V. J. Smith, H. C. Bajaj, S. Neogi, ACS Sustainable Chem. Eng. 2018, 6, 10295.
- 52D. M. Chen, J. Y. Tian, Z. W. Wang, C. S. Liu, M. Chen, M. Du, Chem. Commun. 2017, 53, 10668.
- 53Y. M. Zhang, S. Yuan, G. Day, X. Wang, X. Y. Yang, H. C. Zhou, Coordin. Chem. Rev. 2017, 354, 28.
- 54L. L. Zhang, Z. X. Kang, X. L. Xin, D. F. Sun, CrystEngComm 2016, 18, 193.
- 55B. Ju, Y. Wang, Y.-M. Zhang, T. Zhang, Z. H. Liu, M. J. Li, X.-A. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 13040.
- 56R. Lv, H. Li, J. Su, X. Fu, B. Y. Yang, W. Gu, X. Liu, Inorg. Chem. 2017, 56, 12348.
- 57H. R. Wang, J. H. Qin, C. Huang, Y. B. Han, W. J. Xu, H. W. Hou, Dalton Trans. 2016, 45, 12710.
- 58D. Wang, L. B. Sun, C. Q. Hao, Y. Yan, Z. Q. Liang, RSC Adv. 2016, 6, 57828.
- 59L. Guo, X. F. Zeng, J. H. Lan, J. Yun, D. P. Cao, ChemistrySelect 2017, 2, 1041.