Comparative Studies of Some Novel Cu2+ and Fe3+ Chelates Derived From Tricine (L1) by Single Crystal X-ray, Spectroscopic and Biological Data: Applications to Investigate Antitumor Activity
Eman A. Hassan
Chemistry Department, Faculty of Science, Mansoura University, Egypt
Search for more papers by this authorNagwa Nawar
Chemistry Department, Faculty of Science, Mansoura University, Egypt
Search for more papers by this authorCorresponding Author
Mohsen M. Mostafa
Chemistry Department, Faculty of Science, Mansoura University, Egypt
Correspondence
Mohsen M. Mostafa, Chemistry Department, Faculty of Science, Mansoura University, Egypt.
Email: [email protected]
Search for more papers by this authorEman A. Hassan
Chemistry Department, Faculty of Science, Mansoura University, Egypt
Search for more papers by this authorNagwa Nawar
Chemistry Department, Faculty of Science, Mansoura University, Egypt
Search for more papers by this authorCorresponding Author
Mohsen M. Mostafa
Chemistry Department, Faculty of Science, Mansoura University, Egypt
Correspondence
Mohsen M. Mostafa, Chemistry Department, Faculty of Science, Mansoura University, Egypt.
Email: [email protected]
Search for more papers by this authorAbstract
Novel Cu2+ and Fe3+ chelates derived from L1 were synthesized and characterized by single crystal X-ray diffraction. The results indicate that the Fe (III) crystal, [Fe(L1-H)Cl2], has an orthorhombic structure of the type pc2b while the dimeric Cu (II) crystal, [Cu(L1-H)Cl … ClCu(L1-H)], has a monoclinic with space group Cc. X-ray diffraction and spectroscopic studies revealed that L1 acts as monobasic tetradentate with octahedral geometry in Fe (III) crystal while it behaves as dibasic tetradentate with distorted-octahedral in the Cu (II) crystal. Also, the two chelates were characterized by spectral, magnetic and thermal analyses. DFT parameters were used to prove the liberation of a proton from COOH rather than NH groups. The kinetic and thermodynamic parameters of Fe (III) chelate were determined by Coats-Redfern and Horowitz-Metzger methods. Cyclic voltammogram provides information about the oxidation states of Cu (II) and Fe (III) chelates. Antitumor activity against Epitheliod carcinoma (Hela), breast cancer (MCF-7) and antibacterial activities of chelates were investigated.
Supporting Information
Filename | Description |
---|---|
aoc5096-sup-0001-crystal supplementry (1) Eman.docWord document, 1.8 MB |
TABLE S1 Bond lengths (Å) and bond angles (deg.) of [Fe (tric-H)Cl2] by X-ray diffractional analysis TABLE S2 Bond lengths (Å) and bond angles (deg.) of [Cu (tric-H)Cl … ClCu (tric-H)] by X-ray diffractional analysis TABLE S3 Bond lengths of tricine using DFT-method from DMOL3 calculations TABLE S4 Bond angles (o) of tricine using DFT-method from DMOL3 calculations TABLE S5 Bond lengths (Å) of [Fe (tric-H)Cl2] using DFT-method from DMOL3 calculations TABLE S6 Bond angles (o) of [Fe (tric-H)Cl2] using DFT-method from DMOL3 calculations TABLE S7 Bond lengths (Å) of [Cu (tric-H)Cl … ClCu (tric-H)]using DFT-method from DMOL3 calculations TABLE S8 Bond angles (o) of [Cu (tric-H)Cl … ClCu (tric-H)] using DFT-method from DMOL3 calculations FIGURE S1 IR spectrum of [Cu (tric-H)Cl … ClCu (tric-H)] FIGURE S2 IR spectrum of [Fe (tric-H)Cl2] FIGURE S3 UV spectrum of [Cu (tric-H)Cl … ClCu (tric-H)] FIGURE S4 EPR spectrum of [Cu (tric-H)Cl … ClCu (tric-H)] FIGURE S5 Horowitz- Metzger (HM)of (a) 1st step of Fe crystal complex and (a−)1st step, (b) 2nd step, and (c) 3rd step of Cu crystal complex FIGURE S6 Antibacterial and antifungal effects of Fe complex FIGURE S7 Molecular modeling of (a) tricine, (b) electron density, (c) HOMO and (d) LUMO FIGURE S8 Molecular modeling of (a) [Cu (tric-H)Cl … ClCu (tric-H)], (b) electron density, (c) HOMO and (d) LUMO |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1N. E. Good, Arch. Biochem. Biophys. 1962, 96, 653.
- 2C. Bücke, C. W. Baldry, D. A. Walker, Phytochemistry 1967, 6, 495.
- 3R. S. Gardner, J. Cell Biol. 1969, 42, 320.
- 4V. Virtanen, G. Bordin, Anal. Chim. Acta 1999, 402, 59.
- 5P. Vieles, C. Frezou, J. Galsomias, A. Bonniol, J Chim. Phys. 1972, 69, 869.
- 6O. M. El-Roudi, E. M. Abd Alla, S. A. Ibrahim, J. Chem. Eng. Data 1997, 42, 609.
- 7J. K. Jailwal, J. A. I. Kishan, R. C. Kapoor, J Ind. Chem. Soc. 1977, IV, 1161.
- 8R. C. Kapoor, J. K. Jailwal, J. A. I. Kishan, J Inorg. Nucl. Chem. 1978, 40, 155.
- 9M. Ramos, N. A. Paixao, A. M. Beje, L. A. da Veiga, Acta Crystallogr. 2001, 57, 9.
- 10D. Chakraborty, P. K. Bhattacharya, J. Inorg. Biochem. 1990, 39, 1.
- 11N. S. Al Radadi, S. M. Al-Ashqar, M. M. Mostafa, Synth. React. Inorg. Met-Org Nano Met. Chem. 2011, 41, 203.
- 12A. I. Vogel, Text books of quantitative chemical analysis, 5th ed., Longmans, London 1991.
- 13A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Cryst. 1994, 27, 435.
- 14a)B. Delley, J. Chem. Phys. 1990, 92, 508. b)B. Delley, J. Chem. Quant. Chem. 1998, 69, 423. c)B. Delley, J. Chem. Phys. 2000, 113, 7756. d)X. Wu, A. K. Ray, Phys. Rev. 2002, 65, 85403. e)A. Kessi, B. Delley, Int J Quant Chem 1998, 68, 135.
- 15A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- 16T. Mosmam, J. Immunol. Methods 1983, 65, 55.
- 17H. J. Mauceri, N. N. Hanna, M. A. Beckett, D. H. Gorski, M. J. Staba, K. A. Stellato, K. Bigelow, R. Heimann, S. Gately, M. Dhanabal, G. A. Soff, V. P. Sukhatme, D. W. Kufe, R. R. Weichselbaum, Nature 1998, 394, 287.
- 18A. P. Wilson, in Cytotoxicity and viability assays in animal cell culture: A practical approach, 3rd ed. (Ed: J. R. W. Masters), Oxford University Press, Oxford 2000.
- 19T. H. Rakha, O. A. El-Gammal, H. M. Metwally, G. M. Abu El-Reash, J. Mol. Struct. 2014, 1062, 96.
- 20A. U. Rahman, M. I. Choudhary, W. J. Thomsen, Bioassay techniques for drug development, CRC Press, Taylor & Francis Group, Amsterdam 2001.
10.4324/9780203304532 Google Scholar
- 21S. H. Sumrra, Z. H. Chohan, Spectrochem. Acta 2012, 98, 53.
- 22J. R. Ferraro, Low frequency vibration of inorganic and coordination compounds, Plenum Press, New York 1971.
10.1007/978-1-4684-1809-5 Google Scholar
- 23A. B. P. Lever, Inorganic electronic spectroscopy, Elsevier, Amsterdam 1968.
- 24B. N. Figgis, J. Lewis, J. Wilkins, Modern coordination chemistry, Interscience, New York 1960.
- 25W. J. Geary, Coord. Chem. Rev. 1971, 7, 81.
- 26D. Niholls, Complexes and first row transition elements, Macmillan 1986.
- 27R. L. Petersen, M. C. R. Symans, F. A. Raiwo, J. Chem. Soc. Faraday Trans. 1989, 85, 2435.
- 28P. Kanatharana, M. I. Spritzer, Anal. Chem. 1974, 46, 958.
- 29K. H. Reddy, P. S. Reddy, P. R. Babu, J. Inorg. Biochem. 1999, 77, 169.
- 30B. J. Hathaway, D. E. Billing, Coord. Chem. Rev. 1970, 5, 143.
- 31B. J. Hathaway, A. A. G. Tomlinson, Coord. Chem. Rev. 1970, 5, 1.
- 32N. N. Greenwood, A. Earnshaw, Chemistry of the elements, 1st ed., Pregmon Press, New York 1984.
- 33S. Singh, B. P. Yadava, R. C. Aggarawal, Indian J. Chem. 1984, 23A, 441.
- 34D. Kivelson, E. C. Tynan, Chem. Phys. 1961, 35, 149.
- 35L. J. Boucher, E. C. Tynan, T. F. Yen, Electron spin resonance of metal chelates, Plenum press, New York 1969.
- 36H. H. Horowitz, G. Metzeger, Anal. Chem. 1963, 35, 1464.
- 37A. Coats, J. Redfern, Nature 1964, 201, 68.
- 38A. A. Frost, R. G. Pearson, Kinetics and mechaanisms, Wiley, New York 1961.
- 39P. B. Maravalli, T. R. Goudar, Thermochim. Acta 1999, 235, 35.
- 40K. K. M. Yussuf, R. Sreekala, Reaction Kinetics Mechanism and Catalysis 1992, 48, 575.
- 41D. A. Cleary, E. M. Hamizar, A. H. Francis, J. Phys. Chem. Solid 1968, 48, 21.
- 42R. G. Pearson, J. Org. Chem. 1989, 54, 1423.
- 43J. Padmanabhan, R. Parthasarathi, V. Subramanian, P. Chattaraj, J. Phys. Chem. 2007, 111, 1358.
- 44R. Parthasarathi, J. Padmanabhan, U. Sarkar, B. Maiti, V. Subramanian, P. K. Chattaraj, J. Mol. Struct. 2003, 2, 798.
- 45A. A. El-Asmy, O. A. Al-Gammal, D. A. Saad, S. E. Ghazy, J. Mol. Struct. 2009, 934, 9.