Polymer-anchored mononuclear and binuclear CuII Schiff-base complexes: Impact of heterogenization on liquid phase catalytic oxidation of a series of alkenes
Abhishek Maurya
Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004 Jharkhand, India
Search for more papers by this authorNeha Kesharwani
Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004 Jharkhand, India
Search for more papers by this authorPayal Kachhap
Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004 Jharkhand, India
Search for more papers by this authorVivek Kumar Mishra
Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004 Jharkhand, India
Search for more papers by this authorNikita Chaudhary
Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, 7602 Stellenbosch, South Africa
Search for more papers by this authorCorresponding Author
Chanchal Haldar
Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004 Jharkhand, India
Correspondence
Chanchal Haldar, Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India.
Email: [email protected]
Search for more papers by this authorAbhishek Maurya
Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004 Jharkhand, India
Search for more papers by this authorNeha Kesharwani
Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004 Jharkhand, India
Search for more papers by this authorPayal Kachhap
Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004 Jharkhand, India
Search for more papers by this authorVivek Kumar Mishra
Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004 Jharkhand, India
Search for more papers by this authorNikita Chaudhary
Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, 7602 Stellenbosch, South Africa
Search for more papers by this authorCorresponding Author
Chanchal Haldar
Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004 Jharkhand, India
Correspondence
Chanchal Haldar, Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India.
Email: [email protected]
Search for more papers by this authorAbstract
Liquid phase catalytic oxidation of a number of alkenes, for example, cyclohexene, cis-cyclooctene, styrene, 1-methyl cyclohexene and 1-hexene, was performed using polymer-anchored copper (II) complexes PS-[Cu (sal-sch)Cl] (5), PS-[Cu (sal-tch)Cl] (6), PS-[CH2{Cu (sal-sch)Cl}2] (7) and PS-[CH2{Cu (sal-tch)Cl}2] (8). Neat complexes [Cu (sal-sch)Cl] (1), [Cu (sal-tch)Cl] (2), [CH2{Cu (sal-sch)Cl}2] (3) and [CH2{Cu (sal-tch)Cl}2] (4) were isolated by reacting CuCl2·2H2O with [Hsal-sch] (I), [Hsal-tch] (II), [H2bissal-sch] (III) and [H2bissal-tch] (IV), respectively, in refluxing methanol. Complexes 1–4 have been covalently anchored in Merrifield resin through the amine nitrogen of the semicarbazide or thiosemicarbazide moiety. A number of analytical, spectroscopic and thermal techniques, such as CHNS analysis, Fourier transform-infrared, UV–Vis, PMR, 13C-NMR, electron paramagnetic resonance, scanning electron microscopy, energy-dispersive X-ray analysis, thermogravimetric analysis, atomic force microscopy, atomic absorption spectroscopy, and electrospray ionization-mass spectrometry, were used to analyze and establish the molecular structure of the ligands (I)–(IV) and complexes (1)–(8) in solid state as well as in solution state. Grafted complexes 5–8 were employed as active catalysts for the oxidation of a series of alkenes in the presence of hydrogen peroxide. Copper hydroperoxo species ([CuIII (sal-sch)-O-O-H]), which is believed to be the active intermediate, generated during the catalytic oxidation of alkenes, are identified. It was found that supported catalysts are very economical, green and efficient in contrast to their neat complexes as well as most of the recently reported heterogeneous catalysts.
Conflict of interest
There are no conflicts of interest to declare.
Supporting Information
Filename | Description |
---|---|
aoc5094-sup-0001-Supplementary Information.docxWord 2007 document , 8.6 MB |
DATA S1 Supplementary Information informationFT-IR, electronic and EPR spectra, 1H NMR, 13C NMR, AAS, AFM, SEM, EDX, LC-MS and ESI-MS data of the ligands, supportedand neat copper complexes, recyclability, and catalytic data for the oxidation of alkenes by the reported neatand supported catalysts. |
aoc5094-sup-0002-supplementry caption of figures and tables.docxWord 2007 document , 20.2 KB |
FIGURE S1 FT-IR spectra of ligand [Hsal-sch] (I), [Hsal-tch] (II), [H2bissal-sch] (III) and [H2bissal-tch] (IV) FIGURE S2 FT-IR spectra of complex [Cu (sal-sch)Cl] (1), [Cu (sal-tch)Cl] (2), [CH2{Cu (sal-sch)Cl}2] (3) and [CH2{Cu (sal-tch)Cl}2] (4) FIGURE S3 FT-IR spectrum of chloromethylated polystyrene swelled in methanol FIGURE S4 IR spectra of complex PS-[Cu (sal-sch)Cl] (5), PS-[Cu (sal-tch)Cl] (6), PS-[CH2{Cu (sal-sch)Cl}2] (7) and PS-[CH2{Cu (sal-tch)Cl}2] (8) FIGURE S5 Electronic spectra of (a) ligands (I)–(IV) and (b) copper complexes (1)–(4) recorded in methanol FIGURE S6 Electronic spectra of fresh and recycled polymer-anchored complexes: (a) PS-[Cu (sal-sch)Cl] (5); (b) PS-[Cu (sal-tch)Cl] (6); (c) PS-[CH2{Cu (sal-sch)Cl}2] (7); and (d) PS-[CH2{Cu (sal-tch)Cl}2] (8) recorded in Nujol FIGURE S7 Plot comparing the d-d transitions of copper complexes (1)–(4) recorded in DMF FIGURE S8 Gas phase optimized molecular structure of: (a) 1; (b) 2; (c) 3 and (d) 4 calculated using DFT/B3LYP/LANL2DZ ∪ 6–311 + G(d, p) method FIGURE S9 Molecular orbital diagram for the complex [Cu (sal-sch)Cl] (1) FIGURE S10 Molecular orbital diagram for the complex [Cu (sal-tch)Cl] (2) FIGURE S11 Molecular orbital diagram for the complex [CH2{Cu (sal-sch)Cl}2] (3) FIGURE S12 Molecular orbital diagram for the complex [CH2{Cu (sal-tch)Cl}2] (4) FIGURE S13 HOMO orbital composition of complexes 1–4 FIGURE S14 LUMO orbital composition of complexes 1–4 FIGURE S15 DTA-TGA plots of polymer-anchored CuII complexes 5–8 FIGURE S16 DTG plots of metal complex grafted polymers 5–8 FIGURE S17 AFM pictures (left) and corresponding 3D-surface maps (*) of: (a) PS-Cl; (b) PS- [Cu (sal-sch)Cl] (5); (c) PS-[Cu (sal-tch)Cl] (6); (d) PS-[CH2{Cu (sal-sch)Cl}2] (7); and (e) PS-[CH2{Cu (sal-tch)Cl}2] (8) FIGURE S18 % conversion of the oxidation of cyclohexene, cis-cyclooctene, styrene, 1-methyl cyclohexene and 1-hexene under optimized reaction conditions in the presence of fresh and recycled catalysts FIGURE S19 FT-IR spectra of recycled polymer-anchored complex PS-[Cu (sal-sch)Cl] (5Ŗ), PS-[Cu (sal-tch)Cl] (6Ŗ), PS-[CH2{Cu (sal-sch)Cl}2] (7Ŗ) and PS-[CH2{Cu (sal-tch)Cl}2] (8Ŗ) FIGURE S20 SEM images of used: (a) PS-[Cu (sal-sch)Cl] (5Ŗ); (b) PS-[Cu (sal-tch)Cl] (6Ŗ); (c) PS-[CH2{Cu (sal-sch)Cl}2] (7Ŗ); and (d) PS-[CH2{Cu (sal-tch)Cl}2] (8Ŗ) FIGURE S21 EDX plots of used: (a) PS-[Cu (sal-sch)Cl] (5Ŗ); (b) PS-[Cu (sal-tch)Cl] (6Ŗ); (c) PS-[CH2{Cu (sal-sch)Cl}2] (7Ŗ); and (d) PS-[CH2{Cu (sal-tch)Cl}2] (8Ŗ) FIGURE S22 LC–MS; (a) chromatogram; and (b) MS spectrum of the H2O2 mixed methanolic solution of 1 FIGURE S23 Change in EPR spectra observed during the slow addition of dilute H2O2 into the methanolic solution of (1) FIGURE S24 ESI-mass spectrum of [Cu (sal-sch)Cl] (1) FIGURE S25 ESI-mass spectrum of [Cu (sal-tch)Cl] (2) FIGURE S26 ESI-mass spectrum of [CH2{Cu (sal-sch)Cl}2] (3) FIGURE S27 ESI-mass spectrum of [CH2{Cu (sal-tch)Cl}2] (4) TABLE S1 1H-NMR spectral data (δ in ppm) of ligands (I)–(IV) recorded in DMSO-d6 TABLE S2 13C-NMR spectral data of ligands (I)–(IV) recorded in DMSO-d6 TABLE S3 Spin Hamiltonian parameters of neat CuII complexes 1–4 in DMSO solution and polymer-anchored CuII complexes 5–8 in solid state at room temperature TABLE S4 Important experimental and theoretical bond distances (Å) along with bond angles (°) for complexes 1–4 TABLE S5 Average roughness and mean height of the supported complexes 5–8 and PS-Cl TABLE S6 Selectivity of the oxidized products of styrene TABLE S7 Product % selectivity, % conversion and TOF values of oxidation of 1-methyl cyclohexene with H2O2 under optimized reaction conditions TABLE S8 Selectivity of the oxidized products of 1-hexene TABLE S9 AAS data of one time used polymer-anchored copper (II) complexes 5–8 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1(a)T. Bunchuay, R. Ketkaew, P. Chotmongkolsap, T. Chutimasakul, J. Kanarat, Y. Tantirungrotechai, J. Tantirungrotechai, Cat. Sci. Technol. 2017, 7, 6069. (b)W. J. Ang, Y. Lam, Org. Biomol. Chem. 2015, 13, 1048. (c)M. M. Hossain, S.-G. Shyu, Tetrahedron 2014, 70, 251. (d)Z. P. Pai, N. V. Selivanova, P. V. Oleneva, P. V. Berdnikova, A. M. Beskopyl'nyi, Cat. Com. 2017, 88, 45.
- 2C. Weerakkody, S. Biswas, W. Song, J. He, N. Wasalathanthri, S. Dissanayake, D. A. Kriz, B. Dutta, S. L. Suib, Appl. Catal. B 2018, 221, 681.
- 3K. Parida, K. G. Mishra, S. K. Dash, Ind. Eng. Chem. Res. 2012, 51, 2235.
- 4(a) K. Koike, G. Inoue, T. Fukuda, J. Chem. Eng. Jpn. 1999, 32, 295. (b) S. B. Dorofeev, A. V. Eletskii, B. M. Smimov, Sov. Phys. Dokl. 1981, 26, 318. (c) R. A. Ogle, J. L. Schumacher, Process Saf. Prog. 1998, 17, 127.
- 5(a)K. Kaneda, S. Haruna, T. Imanaka, K. Kawamoto, J. Chem. Soc. Chem. Commun. 1990, 1467.
(b)B. R. Travis, R. S. Narayan, B. Borhan, J. Am. Chem. Soc. 2002, 124, 3824.
c W. Yu, Y. Mei, Y. Kang, Z. Hua, Z. Jin, Org. Lett. 2004, 6, 3217.
(d) D. C. Whitehead, B. R. Travis, B. Borhan, Tetrahedron Lett. 2006, 47, 3797.
(e)K. C. Nicolaou, V. A. Adsool, C. R. H. Hale, Org. Lett. 2010, 12, 1552.
(f)R. D. Arasasingham, G.-X. He, T. C. Bruice, J. Am. Chem. Soc. 1993, 115, 7985.
(g)K. Sato, L. Aoki, R. Noyori, Science 1998, 281, 1646.
(h)W. A. Hermann, T. Weskamp, J. P. Zoller, R. W. Fischer, J. Mol. Catal. A Chem. 2000, 153, 49.
10.1016/S1381-1169(99)00370-2 Google Scholar(i)A. Wang, H. Jiang, J. Org. Chem. 2010, 75, 2321. (j)T. M. Shaikh, F.-E. Hong, Adv. Synth. Catal. 2011, 353, 1491. (k)S. Ma, J. Liu, S. Li, B. Chen, J. Cheng, J. Kuang, Y. Liu, B. Wan, Y. Wang, J. Ye, Q. Yu, W. Yuan, S. Yu, Adv. Synth. Catal. 2011, 353, 1005. (l)D. Xing, B. Guan, G. Cai, Z. Fang, L. Yang, Z. Shi, Org. Lett. 2006, 8, 693.
- 6(a)T. Dohi, N. Takenaga, A. Goto, H. Fujioka, Y. Kita, J. Org. Chem. 2008, 73, 7365. (b)M. Ochiai, T. Ito, H. Takahashi, A. Nakanishi, M. Toyonari, T. Sueda, S. Goto, M. Shiro, J. Am. Chem. Soc. 1996, 118, 7716. (c)Y. Zhao, Y.-Y. Yeung, Org. Lett. 2010, 12, 2128.
- 7(a) M. A. Fousteric, A. I. Koutsourea, S. S. Nikolaropoulos, A. Riahi, J. Muzart, J. Mol. Catal. 2006, 250, 70.
10.1016/j.molcata.2006.01.031 Google Scholar(b)J. Q. Yu, E. J. Corey, Org. Lett. 2002, 4, 2727. (c)A. J. Catino, R. E. Forslund, M. P. Doyle, J. Am. Chem. Soc. 2004, 126, 13 622. (d)H. Peng, A. Lin, Y. Zhang, H. Jiang, J. Zhou, Y. Cheng, C. Zhu, H. Hu, ACS Catal. 2012, 2, 163. (e)Y. Li, T. B. Lee, T. Wang, A. V. Gamble, A. E. V. Gorden, J. Org. Chem. 2012, 77, 4628. (f)M. JuradoGonzalez, A. C. Sullivan, J. R. H. Wilson, Tetrahedron Lett. 2003, 44, 4283. (g)T. K. M. Shing, Y.-Y. Yeung, P. L. Su, Org. Lett. 2002, 4, 3149. (h)J. A. R. Salvador, J. H. Clark, Chem. Commun. 2001, 6, 33. (i)J. A. S. Coelho, A. F. Trindade, R. Wanke, B. G. M. Rocha, L. F. Veiros, P. M. P. Gois, A. J. L. Pombeiro, C. A. M. Afonso, Eur. J. Org. Chem. 2013, 2013, 1471. (j)J.-B. Xia, K. W. Cormier, C. Chen, Chem. Sci. 2012, 3, 2240. (k)C. Zou, Z. Zhang, X. Xu, Q. Gong, J. Li, C.-D. Wu, J. Am. Chem. Soc. 2012, 134, 87. (l)X. L. Yang, M.-H. Xie, C. Zou, Y. He, B. Chen, M. O'Keeffe, C.-D. Wu, J. Am. Chem. Soc. 2012, 134, 10 638. (m)C. S. Yi, K.-H. Kwon, D. W. Lee, Org. Lett. 2009, 11, 1567. (n)T. Nagano, S. Kobayashi, Chem. Lett. 2008, 37, 1042.
- 8M. W. Wang, C. H. Lin, T. Y. Juang, Macromolecules 2013, 46, 8853.
- 9M. J. Frisch, GAUSSIAN 09, Rev. D.01, Gaussian, Wallingford, CT 2009.
- 10R. D. Dennington II, T. A. Keith, J. M. Millam, GaussView 5.0, Wallingford, CT, 2009.
- 11A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- 12C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- 13B. D. Becke, Phys. Rev. B 1988, 38, 3098.
- 14(a)J. Patole, S. Dutta, S. Padhye, E. Sinn, Inorg. Chim. Acta 2001, 318, 207. (b)N. M. H. Salem, A. R. Rashad, L. E. Sayed, S. Foro, W. Haase, M. F. Iskander, Inorg. Chim. Acta 2015, 432, 231.
- 15S. Tangestaninejad, M. H. Habibi, V. Mirkhani, M. Moghadam, G. Grivani, J. Mol. Catal. A Chem. 2006, 255, 249.
- 16V. K. Singh, A. Maurya, N. Kesharwani, P. Kachhap, S. Kumari, A. K. Mahato, V. K. Mishra, C. Haldar, J. Coord. Chem. 2018, 71, 520.
- 17M. R. Maurya, P. Saini, C. Haldar, F. Avecilla, Polyhedron 2012, 31, 710.
- 18T. Abe, T. Kuribayashi, M. Nakamura, Eur. J. Mineral. 2017, 29(6), 949.
- 19M. R. Maurya, C. Haldar, A. A. Khan, A. Azam, A. Salahuddin, A. Kumar, J. C. Pessoa, Eur. J. Inorg. Chem. 2012, 2012, 2560.
- 20M. R. Maurya, C. Haldar, A. Kumar, M. L. Kuznetsov, F. Avecilla, J. C. Pessoa, Dalton Trans. 2013, 42, 11941.
- 21T. Sun, Q. Niu, Z. Guo, T. Li, Tetrahedron Lett. 2017, 58(3), 252.
- 22S. Kumari, A. K. Mahato, A. Maurya, V. K. Singh, N. Kesharwani, P. Kachhap, I. O. Koshevoy, C. Haldar, New J. Chem. 2017, 41, 13 625.
- 23E. Faggi, R. Gavara, M. Bolte, L. Fajarí, L. Juliá, L. Rodríguez, I. Alfonso, Dalton Trans. 2015, 44, 12 700.
- 24M. Lavanya, M. Jagadeesh, J. Haribabu, R. Karvembu, H. K. Rashmi, P. Uma Maheswari, A. V. R. Devi, Inorg. Chim. Acta 2018, 469, 76.
- 25A. J. Amoroso, M. W. Burrows, S. J. Coles, R. Haigh, R. D. Farley, M. B. Hursthouse, M. Jones, K. M. A. Malik, D. M. Murphy, Dalton Trans. 2008, 506.
- 26T. H. Bennur, D. Srinivas, P. Ratnasamy, Micropor. Mesopor. Mater. 2001, 48, 111.
- 27C. G. Zhan, J. A. Nichols, D. A. Dixon, J. Phys. Chem. A 2003, 107, 20.
- 28S. J. J. Titinchi, G. V. Willingh, H. S. Abbo, R. Prasad, Cat. Sci. Technol. 2015, 5, 325.
- 29M. R. Maurya, A. Arya, U. Kumar, A. Kumar, F. Avecillac, J. C. Pessoa, Dalton Trans. 2009, (43), 9555.
- 30M. R. Maurya, N. Chaudhary, F. Avecilla, I. Correia, J. Inorg. Biochem. 2015, 147, 181.
- 31Z. R. Tshentu, C. Togo, R. S. Walmsley, J. Mol. Catal. A Chem. 2010, 318, 30.
- 32A. S. Ogunlaja, W. Chidawanyika, E. Antunes, M. A. Fernandes, T. Nyokong, N. Torto, Z. R. Tshentu, Dalton Trans. 2012, 41, 13 908.
- 33R. S. Walmsley, A. S. Ogunlaja, M. J. Coombes, W. Chidawanyika, C. Litwinski, N. Torto, T. Nyokong, Z. R. Tshentu, J. Mater. Chem. 2012, 22, 5792.
- 34S. M. Islam, P. Mondal, K. Tuhina, A. S. Roy, D. Hossain, S. Mondal, Transition Met. Chem. 2010, 35, 891.
- 35M. R. Maurya, A. Arya, P. Ada, J. C. Pessoa, Appl. Catal. A 2008, 351, 239.
- 36M. R. Maurya, M. Kumar, A. Kumar, J. C. Pessoa, Dalton Trans. 2008, (32), 4220.
- 37K. Kamata, R. Ishimoto, T. Hirano, S. Kuzuya, K. Uehara, N. Mizuno, Inorg. Chem. 2010, 49, 2471.
- 38M. R. Maurya, P. Saini, C. Haldar, A. K. Chandrakar, S. Chand, J. Coord. Chem. 2012, 65, 2903.
- 39J. Tong, W. Li, L. Bo, H. Wang, Y. Hu, Z. Zhang, A. Mahboob, J. Catal. 2016, 344, 474.
- 40(a)G. Yang, M. D. Huff, H. Du, Z. Zhang, Y. Lei, Cat. Com. 2017, 99, 43.
(b)S. Balasubramanyan, S. Arayathody, S. Sugunan, Mater. Chem. Phys. 2018, 211, 23.
(c)M. Kohantorabi, M. R. Gholami, Mater. Chem. Phys. 2018, 213, 472.
(d)X. Feng, J. Hao, Y. Gao, W. Bai, Y. Cheng, F. Wang, L. Han, Q. Suo, Y. Wang, Cat. Com. 2018, 104, 48.
(e)W. Zhong, M. Liu, J. Dai, J. Yang, L. Mao, D. Yin, Appl. Catal. Environ. 2018, 225, 180.
(f)Y. Hakat, T. V. Kotbagi, M. G. Bakker, J. Mol. Catal. A Chem. 2016, 411, 61.
(g)F. P. da Silva, R. V. Gonçalves, L. M. Rossi, J. Mol. Catal. A Chem. 2017, 426, 534.
10.1016/j.molcata.2016.07.044 Google Scholar
- 41G. Zhang, Y. Shi, Y. Wei, Q. Zhang, K. Cai, Inorg. Chem. Commun. 2017, 86, 112.
- 42X. Hou, Z. Wang, C. Fang, T. Li, S. Pan, Appl. Surf. Sci. 2018, 455, 561.
- 43G. Zhang, Y. Shi, Y. Wei, Q. Zhang, Y. Zhang, K. Cai, S. Xiu, Inorg. Chem. Commun. 2018, 91, 81.
- 44A. Patel, R. Sadasivan, Inorg. Chim. Acta 2017, 458, 101.
- 45C. A. Deshmane, J. B. Jasinski, P. Ratnasamy, M. A. Carreon, Cat. Com. 2011, 15, 46.
- 46M. Bonchio, M. Carraro, A. Farinazzo, A. Sartorel, G. Scorrano, U. Kortz, J. Mol. Catal. A Chem. 2007, 262, 36.
- 47K. B. Vu, T. K. Phung, J. Ind. Eng. Chem. 2016, 40, 40.
- 48T. Joseph, D. Srinivas, C. S. Gopinath, S. B. Halligudi, Catal. Lett. 2002, 83, 209.
- 49A. Zsigmond, A. Horvath, F. Notheisz, J. Mol. Catal. A Chem. 2001, 171, 95.
- 50V. Hulea, E. Dumitriu, Appl. Catal. Gen. 2004, 277, 99.
- 51A. S. Sharma, H. Kaur, Appl. Catal. A 2017, 546, 136.
- 52N. C. Desai, J. A. Chudasama, T. J. Karkar, B. Y. Patel, K. A. Jadeja, D. R. Godhani, J. P. Mehta, J. Mol. Catal. A Chem. 2016, 424, 203.
- 53Y. Long, Z. Zhao, L. Wu, S. Luo, H. Wen, W. Wu, H. Zhang, J. Ma, Mol. Catal. 2017, 433, 291.
- 54J. H. Noh, R. Patala, R. Meijboom, Appl. Catal. A 2016, 514, 253.
- 55(a)C. L. Marchena, G. A. Pecchi, L. B. Pierella, Cat. Com. 2019, 119, 28. (b)B. Sakthivel, D. Santhakumar, R. Josephine, K. Sethuraman, A. Dhakshinamoorthy, Cat. Com. 2018, 108, 41. (c)Y. X. Li, Z. Y. Wei, L. Liu, M. L. Gao, Z. Bo Han, Inorg. Chem. Commun. 2018, 88, 47. (d)N. Masunga, G. S. Tito, R. Meijboom, Appl. Catal. A 2018, 552, 154. (e)N. Masunga, B. P. Doyle, E. Carleschi, R. Meijboom, Appl. Catal. A 2018, 559, 175. (f)Y. H. Fu, L. Xu, H. M. Shen, H. Yang, F. M. Zhang, W. D. Zhu, M. H. Fan, Chem. Eng. J. 2016, 299, 135. (g)D. M. Gao, Q. M. Gao, Cat. Com. 2007, 8, 681. (h)Y. Wu, Y. Zhang, J. Cheng, Z. Li, H. Wang, Q. Sun, B. Han, Y. Kong, Micropor. Mesopor. Mater. 2012, 162, 51. (i)W. L. Sun, J. L. Hu, React. Kinet. Mech. Cat. 2016, 119, 305. (j)J. H. Tong, X. D. Cai, H. Y. Wang, Q. P. Zhang, Mater. Res. Bull. 2014, 55, 205. (k)V. Hulea, E. Dumitriu, Appl. Catal. A 2004, 277, 99.
- 56Y. Yoshimura, Y. Ogasawara, K. Suzuki, K. Yamaguchi, N. Mizuno, Cat. Sci. Technol. 2017, 7, 1662.
- 57A. Rezaeifard, M. Jafarpour, R. Haddad, F. Feizpour, Cat. Com. 2017, 95, 88.
- 58P. J. Baricelli, V. J. Sanchez, A. J. Pardey, S. A. Moya, J. Mol. Catal. A 2000, 164, 77.
- 59H. Li, B. Xu, B. Deng, X. Yan, Y. Zheng, Cat. Com. 2014, 46, 224.
- 60S. J. Bora, R. Paul, M. Nandi, P. K. Bhattacharyya, J. Solid State Chem. 2017, 256, 38.
- 61P. Tau, T. Nyokong, J. Mol. Catal. A Chem. 2007, 273, 149.
- 62X. Song, W. Z. Y. Yan, H. Gao, W. Gao, J. Mol. Catal. A Chem. 2016, 413, 32.
- 63Q. N. Zhang, J. Zhang, T. H. Wu, X. P. Zhou, Cat. Com. 2009, 10, 1279.
- 64U. R. Pillai, E. S. Demessie, R. S. Varma, Tetrahedron Lett. 2002, 43, 2909.
- 65V. Conte, A. Coletti, B. Floris, G. Licini, C. Zonta, Coord. Chem. Rev. 2011, 255, 2165.
- 66J. A. L. d. Silva, J. J. R. F. da Silva, A. J. L. Pombeiro, Coord. Chem. Rev. 2011, 255, 2232.
- 67H. Mimoun, I. Seree de Roch, L. Sajus, Tetrahedron 1970, 26, 37.
- 68P. Chaumette, H. Mimoun, L. Saussine, J. Fischer, A. Mitschler, J. Organomet. Chem. 1983, 250, 291.
- 69K. B. Sharpless, J. M. Townsend, D. R. Williams, J. Am. Chem. Soc. 1972, 94, 295.
- 70M. R. Maurya, C. Haldar, S. Behl, N. B. Kamatham, F. Avecilla, J. Coord. Chem. 2011, 64(17), 2995.
- 71(a)S. Huber, M. Cokoja, F. E. Kühn, J. Organomet. Chem. 2014, 751, 25. (b)P. Gisdakis, V. Yudanov, N. Rösch, Inorg. Chem. 2001, 40, 3755. (c)D. V. Deubel, J. Sundermeyer, G. Frenking, J. Am. Chem. Soc. 2000, 122, 10 101. (d)D. V. Deubel, G. Frenking, P. Gisdakis, W. A. Herrmann, N. Rösch, J. Sundermeyer, Acc. Chem. Res. 2004, 37, 645.
- 72E. I. Solomon, P. Chen, M. Metz, S. K. Lee, A. E. Palner, Angew. Chem. Int. Ed. 2001, 40, 4570.
10.1002/1521-3773(20011217)40:24<4570::AID-ANIE4570>3.0.CO;2-4 CAS PubMed Web of Science® Google Scholar
- 73J. P. Klinman, Chem. Rev. 1996, 96, 2541.
- 74S. Mukherjee, S. Samanta, A. Bhaumik, B. C. Ray, Appl. Catal. B 2006, 68, 12.