Enhanced catalytic performance of Pd-Ga bimetallic catalysts for 2-ethylanthraquinone hydrogenation
Yunhao Wang
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorMao Peng
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorChenliang Ye
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorChangna Gan
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJinli Zhang
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Cuili Guo
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Correspondence
Cuili Guo, School of Chemical Engineering & Technology Tianjin University, Tianjin 300350, China.
Email: [email protected]
Search for more papers by this authorYunhao Wang
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorMao Peng
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorChenliang Ye
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorChangna Gan
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJinli Zhang
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Cuili Guo
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Correspondence
Cuili Guo, School of Chemical Engineering & Technology Tianjin University, Tianjin 300350, China.
Email: [email protected]
Search for more papers by this authorAbstract
A series of Pd and Pd-Ga bimetallic catalysts were prepared by a co-impregnation method for 2-ethylanthraquinone (EAQ) hydrogenation to produce hydrogen peroxide. Compared with 0.6Pd catalyst, the hydrogenation efficiency of 0.6Pd1.2Ga catalyst (11.9 g L−1) increases by 32.2%, and the stability of 0.6Pd1.2Ga catalyst is also higher than that of 0.6Pd catalyst. The structures of the samples were determined by N2 adsorption–desorption, ICP, XRD, CO chemisorption, TEM, H2-TPR, in situ CO-DRIFTS and XPS. The results suggest that incorporation of Ga species improves Pd dispersion and generates a strong interaction between Ga2O3 and Pd interface or between Pd and support. DFT calculation results indicate that the strong adsorption of carbonyl group on Ga2O3/Pd interface facilitates the activation of EAQ and promotes the hydrogenation efficiency.
Supporting Information
Filename | Description |
---|---|
AOC5076-sup-0001-supplementary.docxWord 2007 document , 1 MB |
FIGURE S1 N2 adsorption–desorption isotherms and corresponding BJH pore size distributions of (a) γ-Al2O3, (b) 0.6Pd, (c) 0.6Pd0.6Ga, (d) 0.6Pd0.9Ga, (e) 0.6Pd1.2Ga, (f) 0.6Pd1.5Ga, (g) 1.2Ga FIGURE S2 Representative TEM images and particle size distribution of 0.6Pd and 0.6Pd1.2Ga after three runs TABLE S1 The chemical compositions of the fresh and after three runs catalysts |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1X. Li, H. Su, G. Ren, S. Wang, Appl. Catal. A-Gen. 2016, 517, 168.
- 2Q. Ma, N. Wang, G. Liu, L. Wang, Micropor Mesopor Mat. 2019, 279, 245.
- 3M. Selinsek, B. J. Deschner, D. E. Doronkin, T. L. Sheppard, J.-D. Grunwaldt, R. Dittmeyer, ACS Catal. 2018, 8, 2546.
- 4P. Tang, Y. Chai, J. Feng, Y. Feng, Y. Li, D. Li, Appl. Catal. A-Gen. 2014, 469, 312.
- 5R. Hong, J. Feng, Y. He, D. Li, Chem. Eng. Sci. 2015, 135, 274.
- 6Y. Han, Z. He, S. Wang, W. Li, J. Zhang, Cat. Sci. Technol. 2015, 5, 2630.
- 7R. Bi, Q. Wang, C. Miao, J. Feng, D. Li, Catal. Lett. 2019, 149, 1286.
- 8C. Miao, T. Hui, Y. Liu, J. Feng, D. Li, J. Catal. 2019, 370, 107.
- 9E. Yuan, C. Wu, G. Liu, L. Wang, Appl. Catal. A-Gen. 2016, 525, 119.
- 10R. Kosydar, A. Drelinkiewicz, E. Lalik, J. Gurgul, Appl. Catal. A-Gen. 2011, 402, 121.
- 11R. Hong, Y. He, J. Feng, D. Li, AIChE J. 2017, 63, 3955.
- 12Y. Guo, C. Dai, Z. Lei, Chin. J. Catal. 2018, 39, 1070.
- 13E. Yuan, C. Wu, X. Hou, M. Dou, G. Liu, G. Li, L. Wang, J. Catal. 2017, 347, 79.
- 14J. Zhang, K. Gao, S. Wang, W. Li, Y. Han, RSC Adv. 2017, 7, 6447.
- 15Y. Guo, C. Dai, Z. Lei, Chem. Eng. Process. 2019, 136, 211.
- 16S. Lim, C. Chan, K. Chen, H. Tuan, Electrochim. Acta 2019, 297, 288.
- 17C. Yan, L. Lin, D. Gao, G. Wang, X. Bao, J. Mater. Chem. A 2018, 6, 19743.
- 18Y. He, L. Liang, Y. Liu, J. Feng, C. Ma, D. Li, J. Catal. 2014, 309, 166.
- 19D. V. Glyzdova, A. A. Vedyagin, A. M. Tsapina, V. V. Kaichev, A. L. Trigub, M. V. Trenikhin, D. A. Shlyapin, P. G. Tsyrulnikov, A. V. Lavrenov, Appl. Catal. A-Gen. 2018, 563, 18.
- 20O. Oyola-Rivera, M. A. Baltanás, N. Cardona-Martínez, J. CO2 Util. 2015, (8), 9.
- 21Y. Luo, S. Alarcón Villaseca, M. Friedrich, D. Teschner, A. Knop-Gericke, M. Armbrüster, J. Catal. 2016, 338, 265.
- 22K. Kovnir, M. Armbrüster, D. Teschner, T. V. Venkov, L. Szentmiklósi, F. C. Jentoft, A. Knop-Gericke, Y. Grin, R. Schlögl, Surf. Sci. 2009, 603, 1784.
- 23S. Wang, W. Guo, H. Wang, L. Zhu, S. Yin, K. Qiu, New J. Chem. 2014, 38, 2792.
- 24G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 25G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- 26J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 27P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 28E. Yuan, C. Wu, G. Liu, G. Li, L. Wang, J. Ind. Eng. Chem. 2018, 66, 158.
- 29R. J. Kalbasi, N. Mesgarsaravi, R. Gharibi, Appl. Organomet. Chem. 2019, 33, e4800.
- 30F. J. Méndez, L. Piccolo, R. Solano, M. Aouine, Y. Villasana, J. Guerra, S. Curbelo, C. Olivera-Fuentes, J. L. Brito, New J. Chem. 2018, 42, 11165.
- 31D. Ding, X. Xu, P. Tian, X. Liu, J. Xu, Y. Han, Chin. J. Catal. 2018, 39, 673.
- 32S. Wang, K. Gao, W. Li, J. Zhang, Appl. Catal. A-Gen. 2017, 531, 89.
- 33G. Pei, X. Liu, M. Chai, A. Wang, T. Zhang, Chin. J. Catal. 2017, 38, 1540.
- 34S. Phukan, A. Mahanta, D. Kakati, M. H. Rashid, Appl. Organomet. Chem. 2019, 33, e4758.
- 35L. Rodríguez, D. Romero, D. Rodríguez, J. Sánchez, F. Domínguez, G. Arteaga, Appl. Catal. A-Gen. 2010, 373, 66.
- 36N. S. Babu, N. Lingaiah, J. V. Kumar, P. S. S. Prasad, Appl. Catal. A-Gen. 2009, 367, 70.
- 37M. Lesiak, M. Binczarski, S. Karski, W. Maniukiewicz, J. Rogowski, E. Szubiakiewicz, J. Berlowska, P. Dziugan, I. Witońska, J. Mol. Catal. A: Chem. 2014, 395, 337.
- 38Y. He, Y. Liu, P. Yang, Y. Du, J. Feng, X. Cao, J. Yang, D. Li, J. Catal. 2015, 330, 61.
- 39Y. Cao, Z. Sui, Y. Zhu, X. Zhou, D. Chen, ACS Catal. 2017, 7, 7835.
- 40L. Ouyang, G.-j. Da, P.-f. Tian, T.-y. Chen, G.-d. Liang, J. Xu, Y.-F. Han, J. Catal. 2014, 311, 129.
- 41H. Zhou, X. Yang, L. Li, X. Liu, Y. Huang, X. Pan, A. Wang, J. Li, T. Zhang, ACS Catal. 2016, 6, 1054.
- 42L. Ding, H. Yi, W. Zhang, R. You, T. Cao, J. Yang, J. Lu, W. Huang, ACS Catal. 2016, 6, 3700.
- 43C. Battistoni, J. Dormann, D. Fiorani, E. Paparazzo, S. Viticoli, Solid State Commun. 1981, 39, 581.
- 44M. Liu, W. Tang, Y. Xu, H. Yu, H. Yin, S. Zhao, S. Zhou, Appl. Catal. A-Gen. 2018, 549, 273.
- 45X. Li, H. Su, D. Li, H. Chen, X. Yang, S. Wang, Appl. Catal. A-Gen. 2016, 528, 168.
- 46Q. Hu, S. Wang, G. Zhe, Y. Li, Z. Qian, Q. Xiang, Q. Yong, Appl. Catal. B-Environ. 2017, 218, 591.
- 47T. Kamachi, T. Ogata, E. Mori, K. Iura, N. Okuda, M. Nagata, K. Yoshizawa, J. Phys. Chem. C 2015, 119, 8748.
- 48S. Sitthisa, T. Pham, T. Prasomsri, T. Sooknoi, R. G. Mallinson, D. E. Resasco, J. Catal. 2011, 280, 17.
- 49M. K. Bradley, J. Robinson, D. P. Woodruff, Surf. Sci. 2010, 604, 920.