Post modification of zinc based coordination polymer to prepare Zn-Mo-ICP nanoparticles as efficient self-supported catalyst for olefin epoxidation
Corresponding Author
Maryam Mohammadikish
Faculty of Chemistry, Kharazmi University, Tehran, Iran
Correspondence
Maryam Mohammadikish, Faculty of Chemistry, Kharazmi University, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorSana Yarahmadi
Faculty of Chemistry, Kharazmi University, Tehran, Iran
Search for more papers by this authorCorresponding Author
Maryam Mohammadikish
Faculty of Chemistry, Kharazmi University, Tehran, Iran
Correspondence
Maryam Mohammadikish, Faculty of Chemistry, Kharazmi University, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorSana Yarahmadi
Faculty of Chemistry, Kharazmi University, Tehran, Iran
Search for more papers by this authorAbstract
Preparation, characterization, and catalytic properties of bimetallic coordination polymer constructed from 2-aminoterephthalic acid as linker, zinc cations as node, and cis-dioxo molybdenum units as catalytic active sites are reported via two pathways. Molybdenum centers were placed in N,O positions created by condensation reaction of 2-aminoterephthalic acid with salicylaldehyde while zinc cations coordinated via carboxylic acid groups of linker to achieve infinite chains of metalo-ligand. The obtained coordination polymer was fully characterized and its catalytic properties in the epoxidation of olefins with tert-butyl hydroperoxide (TBHP) described. In comparison with previously reported heterogenized molybdenum catalysts, this new coordination polymer exhibited good conversion as well as high selectivity in the epoxidation of olefins. The catalyst is stable under ambient conditions and could be reused as active catalyst for at least five times.
Supporting Information
Filename | Description |
---|---|
aoc5052-sup-0001-Supplementary Information.docxWord 2007 document , 784.9 KB |
FIGURE S1 TEM image of Zn-Mo-ICP (II) FIGURE S2 XRD patterns of Zn-Mo-ICP (II) catalyst and recovered catalyst FIGURE S3 FT-IR spectra of Zn-Mo-ICP (II) catalyst and recovered catalyst |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, A. Y. Faal, S. Bagheri, Adv. Powder Technol. 2016, 27, 2066.
- 2K. H. Park, K. Jang, S. U. Son, D. A. Sweigart, J. Am. Chem. Soc. 2006, 128, 8740.
- 3S. Caron, R. W. Dugger, S. G. Ruggeri, J. A. Ragan, D. H. B. Ripin, Chem. Rev. 2006, 106, 2943.
- 4M. Salavati-Niasari, Z. Salimi, M. Bazarganipour, F. Davar, Inorg. Chim. Acta 2009, 362, 3715.
- 5Y. Chang, Y. Lv, F. Lu, F. Zha, Z. Lei, J. Mol. Catal. A: Chem. 2010, 320, 56.
- 6S. Sharma, S. Sinha, S. Chand, Ind. Eng. Chem. Res. 2012, 51, 8806.
- 7M. Salavati-Niasari, F. Farzaneh, M. Ghandi, J. Mol. Catal. A: Chem. 2002, 186, 101.
- 8M. Salavati-Niasari, P. Salemi, F. Davar, J. Mol. Catal. A: Chem. 2005, 238, 215.
- 9M. Niakan, Z. Asadi, M. Masteri-Farahani, Appl. Surf. Sci. 2019, 481, 394.
- 10M. Masteri-Farahani, P. Eghbali, E. Şahin, Colloids Surf. A Physicochem. Eng. Asp. 2019, 570, 347.
- 11D. Habibi, A. Faraji, M. Arshadi, J. Fierro, J. Mol. Catal. A: Chem. 2013, 372, 90.
- 12C. A. M. Moonhyun Oh, Nature 2005, 438, 651.
- 13W. Cho, S. Park, M. Oh, Chem. Commun. 2011, 47, 4138.
- 14S.-j. Park, W. Cho, M. Oh, CrstEngComm 2010, 12, 1060.
- 15D. K. Alexander, M. Spokoyny, A. Sumrein, C. A. Mirkin, Chem. Soc. Rev. 2009, 38, 1218.
- 16A. M. S. Omar, K. Farha, K. L. Mulfort, S. Galli, J. T. Hupp, C. A. Mirkin, Small 2009, 5, 1727.
- 17K. L. Mulfort, J. T. Hupp, J. Am. Chem. Soc. 2007, 129, 9604.
- 18O. K. Farha, A. M. Spokoyny, K. L. Mulfort, M. F. Hawthorne, C. A. Mirkin, J. T. Hupp, J. Am. Chem. Soc. 2007, 129, 12680.
- 19M. Dinca, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann, J. R. Long, J. Am. Chem. Soc. 2006, 128, 16876.
- 20K. L. Mulfort, J. T. Hupp, Inorg. Chem. 2008, 47, 7936.
- 21Y.-S. Bae, K. L. Mulfort, H. Frost, P. Ryan, S. Punnathanam, L. J. Broadbelt, J. T. Hupp, R. Q. Snurr, Langmuir 2008, 24, 8592.
- 22Y.-S. Bae, O. K. Farha, A. M. Spokoyny, C. A. Mirkin, J. T. Hupp, R. Q. Snurr, Chem. Commun. 2008, 4135.
- 23C. M. Calabrese, T. J. Merkel, W. E. Briley, P. S. Randeria, S. P. Narayan, J. L. Rouge, D. A. Walker, A. W. Scott, C. A. Mirkin, Angewandte Chemie 2015, 127, 486.
10.1002/ange.201407946 Google Scholar
- 24M. Alvaro, E. Carbonell, B. Ferrer, F. X. Llabrés i Xamena, H. Garcia, Chem. A Eur. J. 2007, 13, 5106.
- 25P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Angewandte Chemie 2006, 118, 6120.
10.1002/ange.200601878 Google Scholar
- 26S. M. Cohen, Curr. Opin. Chem. Biol. 2007, 11, 115.
- 27H. Zhang, M. Oh, C. Allen, E. Kumacheva, Biomacromolecules 2004, 5, 2461.
- 28S.-H. Cho, B. Ma, S. T. Nguyen, J. T. Hupp, T. E. Albrecht-Schmitt, Chem Comm 2006, 2563.
- 29S. J. Titinchi, H. S. Abbo, Catal. Today 2013, 204, 114.
- 30P. G. Cozzi, Chem. Soc. Rev. 2004, 33, 410.
- 31W. Xie, J. Wang, Biomass Bioenergy 2012, 36, 373.
- 32R. K. Sharma, Y. Monga, A. Puri, G. Gaba, Green Chem. 2013, 15, 2800.
- 33J. Sun, Y. Fu, R. Li, W. Feng, Chem. Mater. 2018, 30, 1625.
- 34R. Nouri, S. Abedi, A. Morsali, J. Iran. Chem. Soc. 2017, 14, 1601.
- 35B. Zhang, B. Liu, G. Chen, D. Tang, Biosens. Bioelectron. 2015, 64, 6.
- 36W.-Z. Li, Y. Zhou, F. Liu, Y. Li, M.-J. Xia, E.-H. Han, T. Wang, X. Zhang, Y. Fu, Nanomaterials 2017, 7, 237.
- 37G. J. Chen, J. W. McDonald, W. Newton, Inorg. Chem. 1976, 15, 2612.
- 38A. J. Pardey, N. Manosalva, M. Bartolini, J. Molina, M. C. Ortega, L. D'Ornelas, C. Chinea, C. Scott, P. Betancourt, C. Urbina, Catal. Lett. 2008, 122, 274.
- 39A. A. Qaiser, M. M. Hyland, Mater. Sci. Forum, Trans. Tech. Publ. 2010, 657, 35.
- 40M. Masteri-Farahani, N. Tayyebi, J. Mol. Catal. A: Chem. 2011, 348, 83.
- 41H. Alshammari, P. J. Miedziak, S. Bawaked, D. W. Knight, G. J. Hutchings, ChemCatChem 2012, 4, 1565.
- 42S. Song, P. Wang, Y. He, J. Li, M. Dong, J. Wang, T. Tatsumi, W. Fan, Microporous Mesoporous Mater. 2012, 159, 74.
- 43A. A. A. Aziz, J. Mol. Struct. 2010, 979, 77.
- 44M. Masteri-Farahani, J. Mol. Catal. A: Chem. 2009, 316, 45.
10.1016/j.molcata.2009.09.020 Google Scholar
- 45S. J. Bora, R. Paul, M. Nandi, P. K. Bhattacharyya, J. Solid State Chem. 2017, 256, 38.
- 46G. Zhang, Y. Shi, Y. Wei, Q. Zhang, K. Cai, Inorg. Chem. Commun. 2017, 86, 112.
- 47M. Herbert, F. Montilla, A. Galindo, J. Mol. Catal. A: Chem. 2011, 338, 111.
- 48M. Mohammadikish, S. H. Hashemi, J. Mater. Sci. 2019, 54, 6164.