Synthesis and structure of arene ruthenium(II) complexes: One-pot catalytic approach to synthesis of bioactive quinolines under mild conditions
Muthumari Subramanian
Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024 Tamil Nadu, India
Search for more papers by this authorSaranya Sundar
Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024 Tamil Nadu, India
Search for more papers by this authorCorresponding Author
Ramesh Rengan
Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024 Tamil Nadu, India
Correspondence
Ramesh Rengan, Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
Email: [email protected]
Search for more papers by this authorMuthumari Subramanian
Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024 Tamil Nadu, India
Search for more papers by this authorSaranya Sundar
Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024 Tamil Nadu, India
Search for more papers by this authorCorresponding Author
Ramesh Rengan
Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024 Tamil Nadu, India
Correspondence
Ramesh Rengan, Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
Email: [email protected]
Search for more papers by this authorAbstract
Efficient catalytic one-step synthesis of substituted quinoline derivatives using newly synthesized Ru(II) half-sandwich complexes of the type [Ru(η6-p-cymene)Cl(L)] (L = pyrrole-2-aldehydehydrazones) under mild conditions is described. The synthesized complexes exhibit excellent catalytic activity towards the coupling of 2-amino alcohol with functionalized ketones and secondary alcohols in the optimal conditions and afforded the corresponding quinoline derivatives. The synthetic pathway proceeds with high atom efficiency via a sequence of acceptorless dehydrogenation and condensation steps. The maximum isolated yield of the product obtained was up to 97% using 0.3 mol% of catalyst loading for 5 h. These findings significantly advance the scope of the synthesis of bioactive heterocyclic compounds from readily available starting materials.
Supporting Information
Filename | Description |
---|---|
aoc4582-sup-Supplementary_Material.docxWord 2007 document , 2 MB |
Figure S1. 1H NMR spectrum of complex1(400 MHz, CDCl3, 300 K) Figure S2. 1H NMR spectrum of complex2(400 MHz, CDCl3, 300 K) Figure S3. 1H NMR spectrum of complex3(400 MHz, CDCl3, 300 K) Figure S4. 1H NMR spectrum of complex4(400 MHz, CDCl3, 300 K) Figure S5.1H NMR spectrum for entry 1 in Table 4 (400 MHz, CDCl3, 300 K) Figure S6.13C NMR spectrum for entry 1 in Table 4 (400 MHz, CDCl3, 300 K) Figure S7.1H NMR spectrum for entry 2 in Table 4 (400 MHz, CDCl3, 300 K) Figure S8.13C NMR spectrum for entry 2 in Table 4 (400 MHz, CDCl3, 300 K) Figure S9.1H NMR spectrum for entry 3 in Table 4 (400 MHz, CDCl3, 300 K) Figure S10.13C NMR spectrum for entry 3 in Table 4(400 MHz, CDCl3, 300 K) Figure S11.1H NMR spectrum for entry 4 in Table 4 (400 MHz, CDCl3, 300 K) Figure S12.13C NMR spectrum for entry 4in Table 4(400 MHz, CDCl3, 300 K) Figure S13.1H NMR spectrum for entry 5 in Table 4 (400 MHz, CDCl3, 300 K) Figure S14.13C NMR spectrum for entry 5in Table 4(400 MHz, CDCl3, 300 K) Figure S15.1H NMR spectrum for entry 6 in Table 4 (400 MHz, CDCl3, 300 K) Figure S16.13C NMR spectrum for entry 6 in Table 4(400 MHz, CDCl3, 300 K) Figure S17.1H NMR spectrum for entry 7 in Table 4 (400 MHz, CDCl3, 300 K) Figure S18.13C NMR spectrum for entry 7 in Table 4(400 MHz, CDCl3, 300 K) Figure S19.1H NMR spectrum for entry 9 in Table 4 (400 MHz, CDCl3, 300 K) Figure S20.13C NMR spectrum for entry 9 in Table4(400 MHz, CDCl3, 300 K) Figure S21.1H NMR spectrum for entry 10 in Table 4 (400 MHz, CDCl3, 300 K) Figure S22.13C NMR spectrum for entry 10 in Table 4(400 MHz, CDCl3, 300 K) Figure S23.1H NMR spectrum for entry 11 in Table 4 (400 MHz, CDCl3, 300 K) Figure S24.13C NMR spectrum for entry 11 in Table 4(400 MHz, CDCl3, 300 K) Figure S25.1H NMR spectrum for entry 12 in Table 4 (400 MHz, CDCl3, 300 K) Figure S26.13C NMR spectrum for entry 12in Table 4(400 MHz, CDCl3, 300 K) Figure S27.1H NMR spectrum for entry 13 in Table 4 (400 MHz, CDCl3, 300 K) Figure S28.13C NMR spectrum for entry 13 in Table 4(400 MHz, CDCl3, 300 K) Figure S29.1H NMR spectrum for entry 14 in Table 4 (400 MHz, CDCl3, 300 K) Figure S30.13C NMR spectrum for entry 14 in Table 4(400 MHz, CDCl3, 300 K) Figure S31.1H NMR spectrum for entry 15 in Table 4 (400 MHz, CDCl3, 300 K) Figure S32.13C NMR spectrum for entry 15 in Table 4(400 MHz, CDCl3, 300 K) Figure S33.1H NMR spectrum for entry 16 in Table 4(400 MHz, CDCl3, 300 K) Figure S34.13C NMR spectrum for entry 16 in Table 4(400 MHz, CDCl3, 300 K) Figure S35.1H NMR spectrum for entry 18 in Table 4 (400 MHz, CDCl3, 300 K) Figure S36.13C NMR spectrum for entry 18 in Table 4(400 MHz, CDCl3, 300 K) Figure S37.1H NMR spectrum for entry 1 in Table 5 (400 MHz, CDCl3, 300 K) Figure S38.13C NMR spectrum for entry 1 in Table 5(400 MHz, CDCl3, 300 K) Figure S39.1H NMR spectrum for entry 2 in Table 5 (400 MHz, CDCl3, 300 K) Figure S40.13C NMR spectrum for entry 2 in Table 5(400 MHz, CDCl3, 300 K) Figure S41.1H NMR spectrum for entry 3 in Table 5 (400 MHz, CDCl3, 300 K) Figure S42.13C NMR spectrum for entry 3 in Table 5(400 MHz, CDCl3, 300 K) Figure S43.1H NMR spectrum for entry 4 in Table 5 (400 MHz, CDCl3, 300 K) Figure S44.13C NMR spectrum for entry 4 in Table 5(400 MHz, CDCl3, 300 K) Figure S45.1H NMR spectrum for entry 6 in Table 5 (400 MHz, CDCl3, 300 K) Figure S46.13C NMR spectrum for entry 6 in Table 5(400 MHz, CDCl3, 300 K) Figure S47.1H NMR spectrum for entry 7 in Table 5 (400 MHz, CDCl3, 300 K) Figure S48.13C NMR spectrum for entry 7in Table 5(400 MHz, CDCl3, 300 K) Table S1. Data collection and refinement parameters of complex 1 Table S2. Selected bond lengths (Å) and bond angles (°) of complex 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1a) R. D. Larsen, E. G. Corley, A. O. King, J. D. Carrol, P. Davis, T. R. Verhoeven, P. J. Reider, M. Labelle, J. Y. Gauthier, Y. B. Xiang, R. J. Zamboni, J. Org. Chem. 1996, 61, 3398. b) Y. L. Chen, K. C. Fang, J.-Y. Sheu, S. L. Hsu, C. C. Tzeng, J. Med. Chem. 2001, 44, 2374. c) G. Roma, M. D. Braccio, G. Grossi, F. Mattioli, M. Ghia, Eur. J. Med. Chem. 2000, 35, 1021. d) J. Marco-Contelles, E. Pérez-Mayoral, A. Samadi, M. do Carmo Carreiras, E. Soriano, Chem. Rev. 2009, 109, 2652.
- 2T. L. Gildchrist, Heterocyclic Chemistry, 1st ed., Pitman Publishing, London 1985 239 D. Lednicer, L. A. Mitscher, The Organic Chemistry of Drug Synthesis, Wiley-Interscience, New York, 1977, pp. 337–347.
- 3G. Roma, M. Di Braccio, G. Grossi, F. Mattioli, M. Ghia, Eur. J. Med. Chem. 2000, 35, 1021.
- 4D. Dube, M. Blouin, M. Blouin, C. Brideau, C. C. Chan, J. P. Falgueyret, M. Girard, D. Riendeau, P. Tagari, R. N. Young, Bioorg. Med. Chem. Lett. 1998, 8, 1255.
- 5Y. L. Chen, K. C. Fang, J. Y. Sheu, S. L. Hsu, C. C. Tzeng, J. Med. Chem. 2001, 44, 2374.
- 6H. Ebisu, M. Nishikawa, M. Tanaka, T. Okazoe, Y. Morizawa, H. Shinyama, N. Nakamura, J. Cardiovasc. Pharmacol. 1999, 34, 526.
- 7 Martindale, The Extra Pharmacopoeia, 30th ed, p1006. T. Souto-Padron, A. P. Lima, R. de Oliveira Ribeiro, Parasitol. Res. 2006, 99(4), 317.
- 8S. Evangelista, Curr. Opin. Invest. Drugs 2005 Jul, 6(7), 717. L. A. Dawson, K. J. Cato, C. Scott, J. M. Watson, M. D. Wood, R. Foxton, R. de la Flor, G. A. Jones, J. N. Kew, J. E. Cluderay, E. Southam, G. S. Murkitt, J. Gartlon, D. J. Pemberton, D. N. Jones, C. H. Davies, J. Hagan, Neuropsychopharmacology 2008 Jun, 33(7), 1642.
- 9M. P. Maguire, K. R. Sheets, K. McVety, A. P. Spada, A. Zilberstein, J. Med. Chem. 1994, 37, 2129.
- 10a) I. Saito, S. Sando, K. Nakatani, Bioorg. Med. Chem. 2001, 9, 2381. b) K. Nakatani, S. Sando, I. Saito, J. Am. Chem. Soc. 2000, 122, 2172. c) C. H. Nguyen, C. Marchand, S. Delage, J. S. Sun, T. Garestier, H. Claude, E. Bisagni, J. Am. Chem. Soc. 1998, 120, 2501.
- 11a) G. Jones, in Comprehensive Heterocyclic Chemistry, (Eds: A. R. Katritzky, C. W. Ress) Vol. 5, Pergamon, New York 1996 167. b) B. Jiang, Y. C. Si, J. Org. Chem. 2002, 67, 9449. c) H. Skraup, Chem. Ber. 1880, 13, 2086. d) R. H. Mansake, M. Kulka, Org. React. 1953, 7, 59. e) R. J. Linderman, S. K. Kirollos, Tetrahedron Lett. 1990, 31, 2689. f) M. E. Theclitou, L. A. Robinson, Tetrahedron Lett. 2002, 43, 3907.
- 12a) G. Jones, in Comprehensive Heterocyclic Chemistry, (Eds: A. R. Katritzky, C. W. Ress) Vol. 5, Pergamon, New York 1996 167. b) B. Jiang, Y. C. Si, J. Org. Chem. 2002, 67, 9449. c) H. Skraup, Chem. Ber. 1880, 13, 2086. d) R. H. Mansake, M. Kulka, Org. React. 1953, 7, 59. e) R. J. Linderman, S. K. Kirollos, Tetrahedron Lett. 1990, 31, 2689. f) M. E. Theclitou, L. A. Robinson, Tetrahedron Lett. 2002, 43, 3907.
- 13a) J. Yu, Y. Zeng, W. Huang, X. Hao, W.-H. Sun, Dalton Trans. 2011, 40, 8436. b) L. Zhang, X. Hao, W.-H. Sun, C. Redshaw, ACS Catal. 2011, 1, 1213. c) X. Hou, Z. Cai, X. Chen, L. Wang, C. Redshaw, W.-H. Sun, Dalton Trans. 2012, 41, 1617. d) W. Zhang, W. Chai, W.-H. Sun, X. Hu, C. Redshaw, X. Hao, Organometallics 2012, 31, 5039. e) W.-H. Sun, S. Kong, W. Chai, T. Shiono, C. Redshaw, X. Hu, C. Guo, X. Hao, Appl. Catal. A 2012, 67, 447. f) F. Huang, Q. Xing, T. Liang, Z. Flisak, B. Ye, X. Hu, W. Yang, W.-H. Sun, Dalton Trans. 2014, 43, 16818. g) F. Huang, W. Zhang, E. Yue, T. Liang, X. Hu, W.-H. Sun, Dalton Trans. 2016, 45, 657. h) E. P. Mayoral, Z. Musilova, B. Gil, Z. Marszalek, M. Polozij, P. Nachtigall, J. Cejk, Dalton Trans. 2012, 41, 4036.
- 14a) Organic SynthesesColl. Vol. 3, p.56, 1955. Vol. 28, p.11 (1948). Friedländer, P. (1882). "Ueber o-Amidobenzaldehyd". Chemische Berichte. 15 (2): 2572–2575; P. Friedländer, Gohring, C. F. (1883). "Ueber eine Darstellungsmethode im Pyridinkern substituirter Chinolinderivate". Ber. 16 (2): 1833–1839 b) L. Strekowski, A. Czamy, J. Fluoresc. Chem. 2000, 104, 281. Y. Z. Hu, G. Zang, R. P. Thummel, Org. Lett. 2003, 5, 2251 c) A. Arcadi, M. Chiarini, S. Di Giuseppe, F. Marinelli, Synlett 2003, 203. d) B. R. McNaughton, B. L. Miller, Org. Lett. 2003, 5, 4257. e) J. S. Yadav, B. V. Reddy, K. Premlatha, Synlett 2004, 963. f) J. S. Yadav, B. V. Reddy, P. Sreedhar, R. S. Rao, K. Nagaiah, Synthesis 2004, 2381. g) K. Mogilaih, C. S. Reddy, Synth. Commun. 2003, 33, 3131. h) A. Walser, T. Flyll, R. I. J. Fryer, Heterocycl. Chem. 1975, 12, 737. i) K. D. Surya, A. R. Gibbs, Tetrahedron Lett. 2005, 46, 1647.
- 15G. F. Hegedus, J. J. Allen, E. L. Bozell, J. Waterman, J. Am. Chem. Soc. 1978, 100, 5800.
- 16R. C. Larock, M. Y. Kuo, Tetrahedron Lett. 1991, 32, 569.
- 17C. S. Cho, J. Organometal. Chem. 2005, 690, 4094.
- 18J. S. Mahanty, M. De, P. Das, N. G. Kundu, Tetrahedron 1997, 53, 13397.
- 19R. P. Korivi, C. H. Cheng, J. Org. Chem. 2006, 71, 7079.
- 20S. E. Diamond, A. Szalkiewicz, F. Mares, J. Am. Chem. Soc. 1979, 101, 490.
- 21M. Beller, O. R. Thiel, H. Trauthwein, C. G. Hartung, Chem. Eur. J. 2000, 6, 2513.
10.1002/1521-3765(20000717)6:14<2513::AID-CHEM2513>3.0.CO;2-V CAS PubMed Web of Science® Google Scholar
- 22J. Jacob, W. D. Jones, J. Org. Chem. 2003, 68, 3563.
- 23J. Jacob, C. M. Cavalier, W. D. Jones, S. A. Godleski, R. R. Valente, J. Mol. Catal. A 2002, 182, 565.
- 24a) C. S. Cho, W. R. Ren, J. Organometal. Chem. 2007, 692, 4182. b) S. Michlik, R. Kempe, Nat. Chem. 2013, 5. c) S. Ruch, T. Irrgang, R. Kempe, Chem. Eur. J. 2014, 20, 13279.
- 25A. H. Li, D. J. Beard, H. Coate, A. Honda, M. Kadalbajoo, A. Kleinberg, R. Laufer, K. M. Mulvihill, A. Nigro, P. Rastogi, D. Sherman, K. W. Siu, A. G. Steinig, T. Wang, D. Werner, A. P. Crew, M. J. Mulvihill, Synthesis 2010, 10, 1678.
- 26a) C. S. Cho, W. X. Ren, N. S. Yoon, J. Mol. Catal. A 2009, 299, 117. b) N. T. Patil, V. S. Raut, J. Org. Chem. 2010, 75, 6961. c) E. Perez-Mayoral, Z. Musilova, B. Gil, B. Marszalek, M. Polozij, P. Nachtigall, J. Cejk, Dalton Trans. 2012, 41, 4036.
- 27H. V. Mierde, P. Van Der Voort, D. De Vos, F. Verpoort, Eur. J. Org. Chem. 2008, 1625.
- 28S. C. Shim, Chem. Commun. 2000, 1885.
- 29R. Martínez, D. J. Ramón, M. Yus, Eur. J. Org. Chem. 2007, 1599.
- 30H. V. Mierde, P. V. Voort, D. D. Vos, F. Verpoort, Eur. J. Org. Chem. 2008, 1625.
- 31D. Srimani, Y. Ben-David, D. Milstein, Chem. Commun. 2013, 49, 6632.
- 32B. Pan, B. Liu, E. Yue, Q. Liu, X. Yang, Z. Wang, W. H. Sun, ACS Catal. 2016, 6, 1253.
- 33a) E. Sindhuja, R. Ramesh, S. Balaji, Y. Liu, Organometallics 2014, 33, 4269. b) R. N. Prabhu, R. Ramesh, RSC Adv. 2012, 2, 4515. c) T. S. Manikandan, R. Ramesh, D. Semeril, RSC Adv. 2016, 6, 97107. d) S. Saranya, R. Ramesh, J. G. Małecki, Eur. J. Org. Chem. 2017, 45, 6726.
- 34a) C. S. Cho, B. T. Kim, T. J. Kim, S. C. Shim, Chem. Commun. 2001, 2576.
b) P. Friedländer, Ber. Dtsch. Chem. Ges. 1882, 15, 2572.
10.1002/cber.188201502219 Google Scholarc) C. C. Cheng, S. J. Yan, Org. React. 1982, 28, 37. d) S. A. Abdel-Mohsen, A. Geis, J. Chem. Res. 2007, 689. e) G. Jones (Ed), Quinolines, in The Chemistry of Heterocyclic Compounds, Vol. 32Part 1, Wiley, New York 1977 1 J. J. Li, Name Reactions. A Collection of Detailed Reaction Mechanisms, 3rd edition, Springer-Verlag, Heidelberg, Germany, 2006, pp. 243–244.10.1002/9780470187029 Google Scholar
- 35a) R. Martínez, D. J. Ramón, M. Yus, Eur. J. Org. Chem. 2007, 1599. b) B. Pan, B. Liu, E. Yue, Q. Liu, X. Yang, Z. Wang, W. Hua Sun, ACS Catal. 2016, 6, 1247. c) M. Mastalir, M. Glatz, E. Pittenauer, G. Allmaier, K. Kirchner, J. Am. Chem. Soc. 2016, 138, 15543.