Atomic-Level Design of Acid–Base Pairs in Oxides for Selective Catalytic Reduction of Nitrogen Oxides with Ammonia
Guoquan Liu
MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350 P.R. China
National Joint Local Engineering Research Center for Volatile Organic Compounds and Odorous Pollution Control, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorHe Zhang
MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorPengfei Wang
MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350 P.R. China
Search for more papers by this authorChao Gao
MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350 P.R. China
Search for more papers by this authorZechao Zhuang
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Sihui Zhan
MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGuoquan Liu
MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350 P.R. China
National Joint Local Engineering Research Center for Volatile Organic Compounds and Odorous Pollution Control, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorHe Zhang
MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorPengfei Wang
MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350 P.R. China
Search for more papers by this authorChao Gao
MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350 P.R. China
Search for more papers by this authorZechao Zhuang
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Sihui Zhan
MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
It is still a novel yet challenging task to influence and alter reaction pathways by regulating active sites, while the Ce-Ov-W acid–base pairs regulated by oxygen vacancies accelerate the reaction between NH3 and gaseous/adsorbed NO, following enhanced Langmuir–Hinshelwood and Eley–Rideal mechanisms. The strategy tunes the catalytic activity at the atomic scale and provides fresh hints for rationally controlling the reaction pathways toward efficient nitrogen oxide (NOx) removal.
Abstract
Selective catalytic reduction of nitrogen oxides (NOx) with NH3 (NH3-SCR) poses considerable potential in the abatement of NOx emissions. However, the efficient adsorption and speedy reaction of reactants following the specific mechanism in a favorable way is still a challenge for enhancing catalysis. Herein, we propose the strategy aimed at adjusting electronic properties of Ce-Ov-W acid–base pairs through constructing oxygen vacancies on Ce/WOx, thereby fostering SCR activity. Experimental and theoretical results reveal that Ce-Ov-W acid–base pairs not only provide more Ce3+ sites for promoting the reactivity of adsorbed NO, but also accelerate the reaction between NH3 and gaseous NO owing to the generation of W5+ species with superior surface acidity, which enhance Langmuir–Hinshelwood and Eley–Rideal mechanisms, respectively. Consequently, the designed catalysts achieve over 90% NOx conversion above 250 °C and exhibit higher activity than normal Ce/WO3 and V/W-TiO2 commercial catalysts, with anti-poisoning of SO2 and H2O under harsh working conditions, expecting to provide the guidance for promoting de-NOx industrial application.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202509362-sup-0001-SuppMat.docx7.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Shan, J. Du, Y. Zhang, W. Shan, X. Shi, Y. Yu, R. Zhang, X. Meng, F. Xiao, H. He, Natl. Sci. Rev. 2021, 8, 134–153.
- 2L. Han, S. Cai, M. Gao, J. Y. Hasegawa, P. Wang, J. Zhang, L. Shi, D. Zhang, Chem. Rev. 2019, 119, 10916–10976.
- 3W. Tan, A. Liu, S. Xie, Y. Yan, T. E. Shaw, Y. Pu, K. Guo, L. Li, S. Yu, F. Gao, F. Liu, L. Dong, Environ. Sci. Technol. 2021, 55, 4017–4026.
- 4W. Qu, H. Yuan, Z. Ren, J. Qi, D. Xu, J. Chen, L. Chen, H. Yang, Z. Ma, X. Liu, H. Wang, X. Tang, Angew. Chem. Int. Ed. 2022, 61, e202212703.
- 5B. Jiang, S. Zhao, Y. Wang, Y. Wenren, Z. Zhu, J. Harding, X. Zhang, X. Tu, X. Zhang, Appl. Catal. B: Environ. 2021, 286, 119886.
- 6S. Li, Y. Che, L. Liu, Y. Du, X. Wu, J. Catal. 2023, 423, 154–169.
- 7Z. Ma, X. Wu, Z. Si, D. Weng, J. Ma, T. Xu, Appl. Catal. B: Environ. 2015, 179, 380–394.
- 8Y. Bo, H. Wang, Y. Lin, T. Yang, R. Ye, Y. Li, C. Hu, P. Du, Y. Hu, Z. Liu, R. Long, C. Gao, B. Ye, L. Song, X. Wu, Y. Xiong, Angew. Chem. Int. Ed. 2021, 60, 16085–16092.
- 9L. Liang, P. Cao, X. Qin, S. Wu, H. Bai, S. Chen, H. Yu, Y. Su, X. Quan, Appl. Catal. B: Environ. 2023, 325, 122321.
- 10Y. Wang, F. Ma, J. Zhang, H. Zhao, Y. Dong, D. Wang, Nano Res. 2024, 17, 9397–9427.
- 11S. Xu, S. Feng, Y. Yu, D. Xue, M. Liu, C. Wang, K. Zhao, B. Xu, J. Zhang, Nat. Commun. 2024, 15, 1720.
- 12X. Zhou, K. Han, K. Li, J. Pan, X. Wang, W. Shi, S. Song, H. Zhang, Adv. Mat. 2022, 34, 2201859.
- 13G. Liu, P. Wang, H. Zhang, Y. Li, S. Zhan, Environ. Sci. Technol. 2023, 57, 20064–20073.
- 14M. Chen, J. Li, W. Xue, S. Wang, J. Han, Y. Wei, D. Mei, Y. Li, J. Yu, J. Am. Chem. Soc. 2022, 144, 12816–12824.
- 15X. Hu, W. Qu, J. Chen, D. Xu, J. Liu, Y. Dong, R. Liu, Z. Ma, X. Tang, Chem. Eng. J. 2022, 440, 135832.
- 16P. Kompio, A. Brückner, F. Hipler, G. Auer, E. Löffler, W. Grünert, J. Catal. 2012, 286, 237–247.
- 17X. Liu, P. Jiang, Y. Chen, Y. Wang, Q. Ding, Z. Sui, H. Chen, Z. Shen, X. Wu, Chem. Eng. J. 2021, 421, 127833.
- 18H. Kubota, Y. Jing, L. Wan, J. Tong, N. Zhang, S. Mine, T. Toyao, R. Toyoshima, H. Kondoh, D. Ferri, K. Shimizu, ACS Catal. 2023, 13, 9274–9288.
- 19J. Zhang, K. Wu, J. Xiong, Q. Ren, J. Zhong, H. Cai, H. Huang, P. Chen, J. Wu, L. Chen, M. Fu, D. Ye, Appl. Catal. B: Environ. 2022, 316, 121620.
- 20L. Lv, H. Tan, Y. Kong, B. Tang, Q. Ji, Y. Liu, C. Wang, Z. Zhuang, H. Wang, M. Fan, D. Wang, Angew. Chem. Int. Ed. 2024, 63, e202401943.
- 21F. Chen, W. Sun, D. Zhang, F. Guo, S. Zhan, Z. Shen, Adv. Mater. 2022, 34, 2108504.
- 22Z. Wei, W. Wang, W. Li, X. Bai, J. Zhao, E. C. M. Tse, D. L. Phillips, Y. Zhu, Angew. Chem. Int. Ed. 2021, 60, 8236–8242.
- 23N. Zhang, X. Li, Y. Liu, R. Long, M. Li, S. Chen, Z. Qi, C. Wang, L. Song, J. Jiang, Y. Xiong, Small 2017, 13, 1701354.
- 24Y. Zhao, H. Wang, J. Li, Y. Fang, Y. Kang, T. Zhao, C. Zhao, Adv. Funct. Mater. 2023, 33, 2305268.
- 25N. Zhang, X. Li, H. Ye, S. Chen, H. Ju, D. Liu, Y. Lin, W. Ye, C. Wang, Q. Xu, J. Zhu, L. Song, J. Jiang, Y. Xiong, J. Am. Chem. Soc. 2016, 138, 8928–8935.
- 26X. Fang, W. Qu, T. Qin, X. Hu, L. Chen, Z. Ma, X. Liu, X. Tang, Environ. Sci. Technol. 2022, 56, 6631–6638.
- 27Q. Zhu, R. Hailili, Y. Xin, Y. Zhou, Y. Huang, X. Pang, K. Zhang, P. K. J. Robertson, D. W. Bahnemann, C. Wang, Appl. Catal. B: Environ. 2022, 319, 121888.
- 28P. Wang, G. Liu, Z. Hao, H. Zhang, Y. Li, W. Sun, L. Zheng, S. Zhan, Proc. Natl. Acad. Sci. U.S.A. 2023, 120, e2216584120.
- 29S. Wang, L. Pan, J. Song, W. Mi, J. Zou, L.i. Wang, X. Zhang, J. Am. Chem. Soc. 2015, 137, 2975–2983.
- 30Z. Chen, W. Gong, J. Wang, S. Hou, G. Yang, C. Zhu, X. Fan, Y. Li, R. Gao, Y. Cui, Nat. Commun. 2023, 14, 5363.
- 31M. Li, X. Wang, K. Liu, H. Sun, D. Sun, K. Huang, Y. Tang, W. Xing, H. Li, G. Fu, Adv. Mater. 2023, 35, 2302462.
- 32D. Hua, S.-L. Chen, G. Yuan, Y. Wang, Q. Zhao, X. Wang, B. Fu, Micropor. Mesopor. Mat. 2011, 143, 320–325.
- 33W. Tan, C. Wang, S. Yu, Y. Li, S. Xie, F. Gao, L. Dong, F. Liu, J. Haz. Mat. 2021, 416, 125826.
- 34T. Zhou, X. Li, J. Zhao, L. Luo, Y. Wang, Z. Xiao, S. Hu, R. Wang, Z. Zhao, C. Liu, W. Wu, H. Li, Z. Zhang, L. Zhao, H. Yan, J. Zeng, Nat. Mater. 2025, 24, 891–899.
- 35L. Kang, L. Han, J. He, H. Li, T. Yan, G. Chen, J. Zhang, L. Shi, D. Zhang, Environ. Sci. Technol. 2019, 53, 938–945.
- 36L. Han, M. Gao, C. Feng, L. Shi, D. Zhang, Environ. Sci. Technol. 2019, 53, 5946–5956.
- 37J. Liu, H. Cheng, H. Zheng, L. Zhang, B. Liu, W. Song, J. Liu, W. Zhu, H. Li, Z. Zhao, ACS Catal. 2021, 11, 14727–14739.
- 38Y. Xu, X. Wu, L. Cao, Y. Ma, R. Ran, Z. Si, D. Weng, Z. Ma, B. Wang, J. Catal. 2019, 375, 294–303.
- 39Y. Liu, Z. Zhuang, Y. Liu, N. Liu, Y. Li, Y. Cheng, J. Yu, R. Yu, D. Wang, H. Li, Angew. Chem. Int. Ed. 2024, 63, e202411396.
- 40J. Xia, J. Xu, B. Yu, X. Liang, Z. Qiu, H. Li, H. Feng, Y. Li, Y. Cai, H. Wei, H. Li, H. Xiang, Z. Zhuang, D. Wang, Angew. Chem. Int. Ed. 2024, 63, e202412740.
- 41S. Liu, P. Yao, M.-M. Pei, Q.-J. Lin, S.-H. Xu, J.-L. Wang, H.-D. Xu, Y.-Q. Chen, Environ. Sci.: Nano 2021, 8, 2988–3000.
- 42B. Zhao, J. Zou, C. Chen, Q. He, Q. Tang, L. Liu, J. Dong, Chem. Eng. J. 2023, 478, 147396.
- 43W. Zhang, X. Shi, Z. Yan, Y. Shan, Y. Zhu, Y. Yu, H. He, ACS Catal. 2021, 11, 9825–9836.
- 44Z. Lian, F. Liu, H. He, X. Shi, J. Mo, Z. Wu, Chem. Eng. J. 2014, 250, 390–398.
- 45Z. Song, L. Yin, Q. Zhang, P. Ning, Y. Duan, J. Wang, X. Liu, K. Long, Z. Huang, Mol. Catal. 2017, 437, 95–104.
- 46N. Wei, X. Hu, C. Zhao, Z. Tong, J. Yun, X. Jiang, K. Wang, Y. Zou, Z. Chen, Sci. Total Environ. 2023, 873, 162294.
- 47Y. Jia, J. Jiang, R. Zheng, L. Guo, J. Yuan, S. Zhang, M. Gu, J. Haz. Mater. 2021, 412, 125258.
- 48J. Guo, F. Gan, Y. Zhao, J. He, B. Wang, T. Gao, X. Jiang, S. Ma, RSC Adv. 2023, 13, 4032–4039.