Selective Hydroboration of C−C Single Bonds without Transition-Metal Catalysis
Dr. Sida Li
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDr. Chaopeng Hu
Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Liu Leo Liu
Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Lipeng Wu
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000 P. R. China
College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 P. R. China
Search for more papers by this authorDr. Sida Li
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDr. Chaopeng Hu
Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Liu Leo Liu
Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Lipeng Wu
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000 P. R. China
College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 P. R. China
Search for more papers by this authorGraphical Abstract
We present a general system for the hydroboration of C−C single bonds without transition-metal catalysts. Our strategy surpasses the transition-metal systems regarding chemo- and regioselectivities, substrate scopes, or yields. Mechanistic studies, DFT, and IBO calculations revealed a hydroborane-promoted C−C bond cleavage and a hydride shift reaction pathway. The key role of the carbonyl group and the nitrogen atom of the amide was disclosed.
Abstract
Selective hydroboration of C−C single bonds presents a fundamental challenge in the chemical industry. Previously, only catalytic systems utilizing precious metals Ir and Rh, in conjunction with N- and P- ligands, could achieve this, ensuring bond cleavage and selectivity. In sharp contrast, we discovered an unprecedented and general transition-metal-free system for the hydroboration of C−C single bonds. This methodology is transition-metal and ligand-free and surpasses the transition-metal systems regarding chemo- and regioselectivities, substrate versatility, or yields. In addition, our system tolerates various functional groups such as Ar−X (X=halides), heterocyclic rings, ketones, esters, amides, nitro, nitriles, and C=C double bonds, which are typically susceptible to hydroboration in the presence of transition metals. As a result, a diverse range of γ-boronated amines with varied structures and functions has been readily obtained. Experimental mechanistic studies, density functional theory (DFT), and intrinsic bond orbital (IBO) calculations unveiled a hydroborane-promoted C−C bond cleavage and hydride-shift reaction pathway. The carbonyl group of the amide suppresses dehydrogenation between the free N−H and hydroborane. The lone pair on the nitrogen of the amide facilitates the cleavage of C−C bonds in cyclopropanes.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202412368-sup-0001-misc_information.pdf12.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aN. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483;
- 1bK. S. Yoo, C. H. Yoon, K. W. Jung, J. Am. Chem. Soc. 2006, 128, 16384–16393;
- 1cM. Suginome, M. Shirakura, A. Yamamoto, J. Am. Chem. Soc. 2006, 128, 14438–14439;
- 1dR. E. Shade, A. M. Hyde, J.-C. Olsen, C. A. Merlic, J. Am. Chem. Soc. 2010, 132, 1202–1203;
- 1eJ. Carreras, A. Caballero, P. J. Pérez, Chem. Asian J. 2019, 14, 329–343;
- 1fY. Lee, S. Han, S. H. Cho, Acc. Chem. Res. 2021, 54, 3917–3929.
- 2
- 2aM. A. Beenen, C. An, J. A. Ellman, J. Am. Chem. Soc. 2008, 130, 6910–6911;
- 2bL. J. Milo, J. H. Lai, W. Wu, Y. Liu, H. Maw, Y. Li, Z. Jin, Y. Shu, S. E. Poplawski, Y. Wu, D. G. Sanford, J. L. Sudmeier, W. W. Bachovchin, J. Med. Chem. 2011, 54, 4365–4377.
- 3V. F. Hawkins, M. C. Wilkinson, M. Whiting, Org. Process Res. Dev. 2008, 12, 1265–1268.
- 4
- 4aD. A. Evans, G. C. Fu, A. H. Hoveyda, J. Am. Chem. Soc. 1992, 114, 6671–6679;
- 4bS. Pereira, M. Srebnik, J. Am. Chem. Soc. 1996, 118, 909–910;
- 4cJ. V. Obligacion, P. J. Chirik, Org. Lett. 2013, 15, 2680–2683;
- 4dM. L. Scheuermann, E. J. Johnson, P. J. Chirik, Org. Lett. 2015, 17, 2716–2719;
- 4eG. Wang, X. Liang, L. Chen, Q. Gao, J.-G. Wang, P. Zhang, Q. Peng, S. Xu, Angew. Chem. Int. Ed. 2019, 58, 8187–8191.
- 5
- 5aK. M. Waltz, J. F. Hartwig, Science 1997, 277, 211–213;
- 5bH. Chen, S. Schlecht, T. C. Semple, J. F. Hartwig, Science 2000, 287, 1995–1997;
- 5cI. A. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem. Rev. 2010, 110, 890–931;
- 5dS. Kawamorita, R. Murakami, T. Iwai, M. Sawamura, J. Am. Chem. Soc. 2013, 135, 2947–2950;
- 5eX. Jia, Z. Huang, Nat. Chem. 2016, 8, 157–161;
- 5fM. R. Jones, C. D. Fast, N. D. Schley, J. Am. Chem. Soc. 2020, 142, 6488–6492;
- 5gC. Shu, A. Noble, V. K. Aggarwal, Nature 2020, 586, 714–719.
- 6
- 6aC.-T. Yang, Z.-Q. Zhang, H. Tajuddin, C.-C. Wu, J. Liang, J.-H. Liu, Y. Fu, M. Czyzewska, P. G. Steel, T. B. Marder, L. Liu, Angew. Chem. Int. Ed. 2012, 51, 528–532;
- 6bA. S. Dudnik, G. C. Fu, J. Am. Chem. Soc. 2012, 134, 10693–10697;
- 6cJ. Yi, J.-H. Liu, J. Liang, J.-J. Dai, C.-T. Yang, Y. Fu, L. Liu, Adv. Synth. Catal. 2012, 354, 1685–1691;
- 6dS. K. Bose, K. Fucke, L. Liu, P. G. Steel, T. B. Marder, Angew. Chem. Int. Ed. 2014, 53, 1799–1803;
- 6eT. C. Atack, R. M. Lecker, S. P. Cook, J. Am. Chem. Soc. 2014, 136, 9521–9523;
- 6fT. C. Atack, S. P. Cook, J. Am. Chem. Soc. 2016, 138, 6139–6142;
- 6gY. Cheng, C. Mück-Lichtenfeld, A. Studer, Angew. Chem. Int. Ed. 2018, 57, 16832–16836;
- 6hH. Iwamoto, K. Endo, Y. Ozawa, Y. Watanabe, K. Kubota, T. Imamoto, H. Ito, Angew. Chem. Int. Ed. 2019, 58, 11112–11117;
- 6iQ. Liu, J. Hong, B. Sun, G. Bai, F. Li, G. Liu, Y. Yang, F. Mo, Org. Lett. 2019, 21, 6597–6602;
- 6jD. Mazzarella, G. Magagnano, B. Schweitzer-Chaput, P. Melchiorre, ACS Catal. 2019, 9, 5876–5880;
- 6kL. Zhang, Z.-Q. Wu, L. Jiao, Angew. Chem. Int. Ed. 2020, 59, 2095–2099;
- 6lX. Wang, P. Cui, C. Xia, L. Wu, Angew. Chem. Int. Ed. 2021, 60, 12298–12303.
- 7
- 7aS. Mun, J.-E. Lee, J. Yun, Org. Lett. 2006, 8, 4887–4889;
- 7bJ.-E. Lee, J. Yun, Angew. Chem. Int. Ed. 2008, 47, 145–147;
- 7cK.-s. Lee, A. R. Zhugralin, A. H. Hoveyda, J. Am. Chem. Soc. 2009, 131, 7253–7255;
- 7dJ. M. O'Brien, K.-s. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132, 10630–10633;
- 7eY. Sasaki, Y. Horita, C. Zhong, M. Sawamura, H. Ito, Angew. Chem. Int. Ed. 2011, 50, 2778–2782.
- 8
- 8aM. A. Huffman, L. S. Liebeskind, J. Am. Chem. Soc. 1991, 113, 2771–2772;
- 8bM. Gozin, A. Weisman, Y. Ben-David, D. Milstein, Nature 1993, 364, 699–701;
- 8cP. W. Jennings, L. L. Johnson, Chem. Rev. 1994, 94, 2241–2290;
- 8dM. Murakami, H. Amii, K. Shigeto, Y. Ito, J. Am. Chem. Soc. 1996, 118, 8285–8290;
- 8eB. L. Edelbach, R. J. Lachicotte, W. D. Jones, J. Am. Chem. Soc. 1998, 120, 2843–2853;
- 8fB. Rybtchinski, D. Milstein, Angew. Chem. Int. Ed. 1999, 38, 870–883;
10.1002/(SICI)1521-3773(19990401)38:7<870::AID-ANIE870>3.0.CO;2-3 PubMed Web of Science® Google Scholar
- 8gC.-H. Jun, H. Lee, J. Am. Chem. Soc. 1999, 121, 880–881;
- 8hM. Murakami, T. Itahashi, Y. Ito, J. Am. Chem. Soc. 2002, 124, 13976–13977;
- 8iS. C. Bart, P. J. Chirik, J. Am. Chem. Soc. 2003, 125, 886–887;
- 8jS. Matsumura, Y. Maeda, T. Nishimura, S. Uemura, J. Am. Chem. Soc. 2003, 125, 8862–8869;
- 8kY. Nakao, S. Oda, T. Hiyama, J. Am. Chem. Soc. 2004, 126, 13904–13905;
- 8lZ. He, A. K. Yudin, Org. Lett. 2006, 8, 5829–5832;
- 8mY. Nakao, A. Yada, S. Ebata, T. Hiyama, J. Am. Chem. Soc. 2007, 129, 2428–2429;
- 8nM. P. Watson, E. N. Jacobsen, J. Am. Chem. Soc. 2008, 130, 12594–12595;
- 8oS. Chiba, Y.-J. Xu, Y.-F. Wang, J. Am. Chem. Soc. 2009, 131, 12886–12887;
- 8pK. Nakai, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2011, 133, 11066–11068;
- 8qM. H. Shaw, E. Y. Melikhova, D. P. Kloer, W. G. Whittingham, J. F. Bower, J. Am. Chem. Soc. 2013, 135, 4992–4995;
- 8rX. Zhou, G. Dong, J. Am. Chem. Soc. 2015, 137, 13715–13721;
- 8sM. H. Shaw, R. A. Croft, W. G. Whittingham, J. F. Bower, J. Am. Chem. Soc. 2015, 137, 8054–8057;
- 8tM. Murakami, N. Ishida, J. Am. Chem. Soc. 2016, 138, 13759–13769;
- 8uL. Deng, Y. Fu, S. Y. Lee, C. Wang, P. Liu, G. Dong, J. Am. Chem. Soc. 2019, 141, 16260–16265;
- 8vS.-H. Hou, X. Yu, R. Zhang, L. Deng, M. Zhang, A. Y. Prichina, G. Dong, J. Am. Chem. Soc. 2020, 142, 13180–13189;
- 8wX. Yu, Z. Zhang, G. Dong, J. Am. Chem. Soc. 2022, 144, 9222–9228.
- 9
- 9aG. Fumagalli, S. Stanton, J. F. Bower, Chem. Rev. 2017, 117, 9404–9432;
- 9bV. Pirenne, B. Muriel, J. Waser, Chem. Rev. 2021, 121, 227–263.
- 10
- 10aW. A. Donaldson, Tetrahedron 2001, 57, 8589–8627;
- 10bM. H. Shaw, N. G. McCreanor, W. G. Whittingham, J. F. Bower, J. Am. Chem. Soc. 2015, 137, 463–468;
- 10cG.-W. Wang, J. F. Bower, J. Am. Chem. Soc. 2018, 140, 2743–2747;
- 10dO. O. Sokolova, J. F. Bower, Chem. Rev. 2021, 121, 80–109.
- 11D. Wang, X.-S. Xue, K. N. Houk, Z. Shi, Angew. Chem. Int. Ed. 2018, 57, 16861–16865.
- 12H. Kondo, S. Miyamura, K. Matsushita, H. Kato, C. Kobayashi, Arifin, K. Itami, D. Yokogawa, J. Yamaguchi, J. Am. Chem. Soc. 2020, 142, 11306–11313.
- 13
- 13aY. Wang, J. Bai, Y. Yang, W. Zhao, Y. Liang, D. Wang, Y. Zhao, Z. Shi, Chem. Sci. 2021, 12, 3599–3607;
- 13bT. Wang, M. Wang, Y. Wang, M. Li, Y. Zheng, Q. Chen, Y. Zhao, Z. Shi, Chem 2023, 9, 130–142.
- 14
- 14aC. W. Liskey, J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 12422–12425;
- 14bR. Murakami, K. Tsunoda, T. Iwai, M. Sawamura, Chem. Eur. J. 2014, 20, 13127–13131;
- 14cS. Miyamura, M. Araki, T. Suzuki, J. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2015, 54, 846–851.
- 15We reported a zirconium and hafnium catalyzed C–C bond hydroboration during the peer review process of this manuscript: S. Li, H. Jiao, X.-Z. Shu, L. Wu, Nat. Commun. 2024, 15, 1846.
- 16J. G. M. Morton, M. A. Dureen, D. W. Stephan, Chem. Commun. 2010, 46, 8947–8949.
- 17Z.-Y. Zhang, Z.-Y. Liu, R.-T. Guo, Y.-Q. Zhao, X. Li, X.-C. Wang, Angew. Chem. Int. Ed. 2017, 56, 4028–4032.
- 18B. Su, Y. Li, Z. H. Li, J.-L. Hou, H. Wang, Organometallics 2020, 39, 4159–4163.
- 19
- 19aN. Bodor, M. J. S. Dewar, J. Am. Chem. Soc. 1971, 93, 6685–6686;
- 19bC. C. Lee, S. Vassie, E. C. F. Ko, J. Am. Chem. Soc. 1972, 94, 8931–8932;
- 19cB. Chiavarino, M. E. Crestoni, A. A. Fokin, S. Fornarini, Chem. Eur. J. 2001, 7, 2916–2921.
10.1002/1521-3765(20010702)7:13<2916::AID-CHEM2916>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- 20X. Liu, Q. Zhu, D. Chen, L. Wang, L. Jin, C. Liu, Angew. Chem. Int. Ed. 2020, 59, 2745–2749.
- 21
- 21aG. Knizia, J. Chem. Theory Comput. 2013, 9, 4834–4843;
- 21bG. Knizia, J. E. Klein, Angew. Chem. Int. Ed. 2015, 54, 5518–5522.
- 22
- 22aM. K. Goetz, J. S. Anderson, J. Am. Chem. Soc. 2019, 141, 4051–4062;
- 22bF. Ebner, L. M. Sigmund, L. Greb, Angew. Chem. Int. Ed. 2020, 59, 17118–17124.