Constructing Quasi-Single Ion Conductors by a β-Cyclodextrin Polymer to Stabilize Zn Anode
Guoqun Zhang
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Lulu Fu
Department of Chemistry School of Science, Tianjin University of Science & Technology, Tianjin, 300457 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yuan Chen
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035 P.R. China
Search for more papers by this authorDr. Kun Fan
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035 P.R. China
Search for more papers by this authorDr. Chenyang Zhang
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorHuichao Dai
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorLinnan Guan
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorHaoyu Guo
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorDr. Minglei Mao
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Chengliang Wang
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035 P.R. China
Search for more papers by this authorGuoqun Zhang
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Lulu Fu
Department of Chemistry School of Science, Tianjin University of Science & Technology, Tianjin, 300457 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yuan Chen
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035 P.R. China
Search for more papers by this authorDr. Kun Fan
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035 P.R. China
Search for more papers by this authorDr. Chenyang Zhang
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorHuichao Dai
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorLinnan Guan
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorHaoyu Guo
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorDr. Minglei Mao
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Chengliang Wang
School of Integrated Circuits Wuhan National Laboratory for Optoelectronics (WNLO) Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074 P.R. China
Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035 P.R. China
Search for more papers by this authorGraphical Abstract
A β-cyclodextrin polymer is used to construct a quasi-single ion conductor for coating the Zn anodes, and thereby inhibited the corrosion of Zn anode, prevented the side reaction, elevated the Zn ion transference number, suppressed the formation of space charge regions and stabilized the plating/striping of Zn ions.
Abstract
Aqueous Zn-ion batteries (AZIBs) are promising for the next-generation large-scale energy storage. However, the Zn anode remains facing challenges. Here, we report a cyclodextrin polymer (P-CD) to construct quasi-single ion conductor for coating and protecting Zn anodes. The P-CD coating layer inhibited the corrosion of Zn anode and prevented the side reaction of metal anodes. More important is that the cyclodextrin units enabled the trapping of anions through host–guest interactions and hydrogen bonds, forming a quasi-single ion conductor that elevated the Zn ion transference number (from 0.31 to 0.68), suppressed the formation of space charge regions and hence stabilized the plating/striping of Zn ions. As a result, the Zn//Zn symmetric cells coated with P-CD achieved a 70.6 times improvement in cycle life at high current densities of 10 mA cm−2 with 10 mAh cm−2. Importantly, the Zn//K1.1V3O8 (KVO) full-cells with high mass loading of cathode materials and low N/P ratio of 1.46 reached the capacity retention of 94.5 % after 1000 cycles at 10 A g−1; while the cell without coating failed only after 230 cycles. These results provide novel perspective into the control of solid-electrolyte interfaces for stabilizing Zn anode and offer a practical strategy to improve AZIBs.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202412173-sup-0001-misc_information.pdf3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Zheng, Q. Zhao, T. Tang, J. Yin, C. D. Quilty, G. D. Renderos, X. Liu, Y. Deng, L. Wang, D. C. Bock, C. Jaye, D. Zhang, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok, L. A. Archer, Science 2019, 366, 645–648;
- 1bY. Chen, H. Dai, K. Fan, G. Zhang, M. Tang, Y. Gao, C. Zhang, L. Guan, M. Mao, H. Liu, T. Zhai, C. Wang, Angew. Chem. Int. Ed. 2023, 62, e202302539;
- 1cY. Chen, J. Li, Q. Zhu, K. Fan, Y. Cao, G. Zhang, C. Zhang, Y. Gao, J. Zou, T. Zhai, C. Wang, Angew. Chem. Int. Ed. 2022, 61, e202116289;
- 1dS. W. D. Gourley, R. Brown, B. D. Adams, D. Higgins, Joule 2023, 7, 1415–1436;
- 1eG. Zhang, L. Fu, Y. Chen, K. Fan, C. Zhang, H. Dai, L. Guan, M. Mao, J. Ma, C. Wang, Adv. Mater. 2024, 36, 2405949;
- 1fY. Chen, K. Fan, Y. Gao, C. Wang, Adv. Mater. 2022, 34, 2200662.
- 2
- 2aL. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C. Yang, L. Chen, J. Vatamanu, E. Hu, M. J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J. T. Fourkas, X. Q. Yang, K. Xu, O. Borodin, C. Wang, Nat. Nanotechnol. 2021, 16, 902–910;
- 2bD. Han, C. Cui, K. Zhang, Z. Wang, J. Gao, Y. Guo, Z. Zhang, S. Wu, L. Yin, Z. Weng, F. Kang, Q.-H. Yang, Nat. Sustain. 2021, 5, 205–213;
- 2cL. Ma, M. A. Schroeder, O. Borodin, T. P. Pollard, M. S. Ding, C. Wang, K. Xu, Nat. Energy 2020, 5, 743–749.
- 3C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, ACS Energy Lett. 2021, 6, 1015–1033.
- 4
- 4aD. Han, S. Wu, S. Zhang, Y. Deng, C. Cui, L. Zhang, Y. Long, H. Li, Y. Tao, Z. Weng, Q. H. Yang, F. Kang, Small 2020, 16, e2001736;
- 4bJ. M. Ferreira, M. Oliveira, G. F. Trindade, L. C. L. Santos, C. R. Tomachuk, M. A. Baker, Corros. Sci. 2018, 137, 13–32.
- 5
- 5aW. Lu, C. Zhang, H. Zhang, X. Li, ACS Energy Lett. 2021, 6, 2765–2785;
- 5bQ. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo, X. Li, Y. Tang, H. Li, B. Dong, C. Zhi, Adv. Mater. 2020, 32, e2001854.
- 6
- 6aR. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao, L. Qie, Y. Huang, Nat. Commun. 2022, 13, 3252;
- 6bP. Wang, X. Xie, Z. Xing, X. Chen, G. Fang, B. Lu, J. Zhou, S. Liang, H. J. Fan, Adv. Energy Mater. 2021, 11, 2101158;
- 6cJ. Hao, L. Yuan, C. Ye, D. Chao, K. Davey, Z. Guo, S. Z. Qiao, Angew. Chem. Int. Ed. 2021, 60, 7366–7375;
- 6dM. Yan, N. Dong, X. Zhao, Y. Sun, H. Pan, ACS Energy Lett. 2021, 6, 3236–3243;
- 6eD. Han, Z. Wang, H. Lu, H. Li, C. Cui, Z. Zhang, R. Sun, C. Geng, Q. Liang, X. Guo, Y. Mo, X. Zhi, F. Kang, Z. Weng, Q. H. Yang, Adv. Energy Mater. 2022, 12, 2102982.
- 7
- 7aX. Li, Q. Li, Y. Hou, Q. Yang, Z. Chen, Z. Huang, G. Liang, Y. Zhao, L. Ma, M. Li, Q. Huang, C. Zhi, ACS Nano 2021, 15, 14631–14642;
- 7bX. Zhao, Y. Gao, Q. H. Cao, F. Bu, J. Pu, Y. X. Wang, C. Guan, Adv. Energy Mater. 2023, 13, 2301741;
- 7cJ. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao, L. Li, R. Chen, Adv. Mater. 2021, 34, e2106897;
- 7dH. Z. Liu, J. H. Li, X. N. Zhang, X. X. Liu, Y. Yan, F. J. Chen, G. H. Zhang, H. G. Duan, Adv. Funct. Mater. 2021, 31, 2106550.
- 8
- 8aX. Zhang, J. Li, D. Liu, M. Liu, T. Zhou, K. Qi, L. Shi, Y. Zhu, Y. Qian, Energy Environ. Sci. 2021, 14, 3120–3129;
- 8bX. S. Ge, W. H. Zhang, F. C. Song, B. Xie, J. D. Li, J. Z. Wang, X. J. Wang, J. W. Zhao, G. L. Cui, Adv. Funct. Mater. 2022, 32, 2200429;
- 8cJ. Cao, D. Zhang, C. Gu, X. Wang, S. Wang, X. Zhang, J. Qin, Z. S. Wu, Adv. Energy Mater. 2021, 11, 2101299;
- 8dJ. Cao, D. Zhang, C. Gu, X. Zhang, M. Okhawilai, S. Wang, J. Han, J. Qin, Y. Huang, Nano Energy 2021, 89, 106322;
- 8eC. Li, Z. Sun, T. Yang, L. Yu, N. Wei, Z. Tian, J. Cai, J. Lv, Y. Shao, M. H. Rummeli, J. Sun, Z. Liu, Adv. Mater. 2020, 32, e2003425.
- 9
- 9aP. Wang, S. Liang, C. Chen, X. Xie, J. Chen, Z. Liu, Y. Tang, B. Lu, J. Zhou, Adv. Mater. 2022, 34, 2202733;
- 9bH. Yang, Y. Qiao, Z. Chang, H. Deng, X. Zhu, R. Zhu, Z. Xiong, P. He, H. Zhou, Adv. Mater. 2021, 33, e2102415;
- 9cJ. Han, H. Euchner, M. Kuenzel, S. M. Hosseini, A. Groß, A. Varzi, S. Passerini, ACS Energy Lett. 2021, 6, 3063–3071;
- 9dH. Liu, J.-G. Wang, W. Hua, L. Ren, H. Sun, Z. Hou, Y. Huyan, Y. Cao, C. Wei, F. Kang, Energy Environ. Sci. 2022, 15, 1872–1881.
- 10C. Jiang, Q. Jia, M. Tang, K. Fan, Y. Chen, M. Sun, S. Xu, Y. Wu, C. Zhang, J. Ma, C. Wang, W. Hu, Angew. Chem. Int. Ed. 2021, 60, 10871–10879.
- 11
- 11aM. Qiu, P. Sun, Y. Wang, L. Ma, C. Zhi, W. Mai, Angew. Chem. Int. Ed. 2022, 61, e202210979;
- 11bA. Chen, C. Zhao, Z. Guo, X. Lu, J. Zhang, N. Liu, Y. Zhang, N. Zhang, Adv. Funct. Mater. 2022, 32, 2203595;
- 11cY. Yang, H. Hua, Z. Lv, W. Meng, M. Zhang, H. Li, P. Lin, J. Yang, G. Chen, Y. Kang, Z. Wen, J. Zhao, C. C. Li, ACS Energy Lett. 2023, 8, 1959–1968;
- 11dS. S. Park, Y. Tulchinsky, M. Dincă, J. Am. Chem. Soc. 2017, 139, 13260–13263;
- 11eH. Xia, G. Xu, X. Cao, C. Miao, H. Zhang, P. Chen, Y. Zhou, W. Zhang, Z. Sun, Adv. Mater. 2023, 35, 2301996.
- 12
- 12aG. Q. Zhang, Y. Chen, L. L. Fu, L. F. Zheng, K. Fan, C. Y. Zhang, J. C. Zou, H. C. Dai, L. N. Guan, Y. Y. Cao, M. L. Mao, J. Ma, C. L. Wang, SmartMat 2024, 5, e1216;
- 12bK. Zhao, G. Fan, J. Liu, F. Liu, J. Li, X. Zhou, Y. Ni, M. Yu, Y. M. Zhang, H. Su, Q. Liu, F. Cheng, J. Am. Chem. Soc. 2022, 144, 11129–11137.
- 13
- 13aK. L. Wong, G. L. Law, Y. Y. Yang, W. T. Wong, Adv. Mater. 2006, 18, 1051–1054;
- 13bS. K. Kim, J. Lee, N. J. Williams, V. M. Lynch, B. P. Hay, B. A. Moyer, J. L. Sessler, J. Am. Chem. Soc. 2014, 136, 15079–15085.
- 14A. Alsbaiee, B. J. Smith, L. Xiao, Y. Ling, D. E. Helbling, W. R. Dichtel, Nature 2016, 529, 190–194.
- 15
- 15aL. Zhang, Y. Guo, R. Hao, Y. Shi, H. You, H. Nan, Y. Dai, D. Liu, D. Lei, J. Fang, Nat. Commun. 2021, 12, 6849;
- 15bY. Zhou, G. Cheng, K. Chen, J. Lu, J. Lei, S. Pu, Ecotoxicol. Environ. Saf. 2019, 170, 278–285.
- 16
- 16aR. Zhang, Y. Feng, Y. Ni, B. Zhong, M. Peng, T. Sun, S. Chen, H. Wang, Z. Tao, K. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202304503;
- 16bN. Dong, X. Zhao, M. Yan, H. Li, H. Pan, Nano Energy 2022, 104, 107903.
- 17A. Arora, S. Devi, V. Jaswal, J. Singh, M. Kinger, V. Gupta, Orient. J. Chem. 2014, 30, 1671–1679.
- 18
- 18aT. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan, G. Fang, J. Zhou, S. Liang, Energy Environ. Sci. 2020, 13, 4625–4665;
- 18bJ. Shin, J. Lee, Y. Kim, Y. Park, M. Kim, J. W. Choi, Adv. Energy Mater. 2021, 11, 2100676;
- 18cH. Jin, S. Dai, K. Xie, Y. Luo, K. Liu, Z. Zhu, L. Huang, L. Huang, J. Zhou, Small 2022, 18, e2106441.
- 19H. He, H. Qin, J. Wu, X. Chen, R. Huang, F. Shen, Z. Wu, G. Chen, S. Yin, J. Liu, Energy Storage Mater. 2021, 43, 317–336.
- 20Z. Cai, J. Wang, Z. Lu, R. Zhan, Y. Ou, L. Wang, M. Dahbi, J. Alami, J. Lu, K. Amine, Y. Sun, Angew. Chem. Int. Ed. 2022, 61, e202116560.
- 21
- 21aF. Ming, Y. Zhu, G. Huang, A. H. Emwas, H. Liang, Y. Cui, H. N. Alshareef, J. Am. Chem. Soc. 2022, 144, 7160–7170;
- 21bN. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Nat. Commun. 2017, 8, 405.
- 22D. Li, Y. Tang, S. Liang, B. Lu, G. Chen, J. Zhou, Energy Environ. Sci. 2023, 16, 3381–3390.
- 23
- 23aF. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu, J. G. Zhang, J. Am. Chem. Soc. 2013, 135, 4450–4456;
- 23bW. Liu, P. Liu, D. Mitlin, Chem. Soc. Rev. 2020, 49, 7284–7300.
- 24J. Guo, F. Feng, X. Jiang, R. Wang, D. Chu, Y. Ren, F. Chen, P. He, Z. F. Ma, S. Chen, T. Liu, Adv. Funct. Mater. 2024, 34, 2313496.
- 25G. Zhang, T. Wu, H. Zhou, H. Jin, K. Liu, Y. Luo, H. Jiang, K. Huang, L. Huang, J. Zhou, ACS Energy Lett. 2021, 6, 2111–2120.
- 26
- 26aJ. Yue, L. Lin, L. Jiang, Q. Zhang, Y. Tong, L. Suo, Y.-s. Hu, H. Li, X. Huang, L. Chen, Adv. Energy Mater. 2020, 10, 2000665;
- 26bL. Zhang, B. Zhang, J. Hu, J. Liu, L. Miao, J. Jiang, Small Methods 2021, 5, 2100094;
- 26cX. Dou, X. Xie, S. Liang, G. Fang, Sci. Bull. 2024, 69, 833–845.
- 27
- 27aZ. Xu, H. Li, Y. Liu, K. Wang, H. Wang, M. Ge, J. Xie, J. Li, Z. Wen, H. Pan, S. Qu, J. Liu, Y. Zhang, Y. Tang, S. Chen, Mater. Horiz. 2023, 10, 3680–3693;
- 27bW. Zhang, Q. Zhao, Y. Hou, Z. Shen, L. Fan, S. Zhou, Y. Lu, L. A. Archer, Sci. Adv. 2021, 7, eabl3752.
- 28
- 28aY. Chen, Q. Zhu, K. Fan, Y. Gu, M. Sun, Z. Li, C. Zhang, Y. Wu, Q. Wang, S. Xu, J. Ma, C. Wang, W. Hu, Angew. Chem. Int. Ed. 2021, 60, 18769–18776;
- 28bC. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang, M. Yan, M. Tian, M. Wang, J. Yang, G. Cao, Energy Environ. Sci. 2019, 12, 2273–2285.
- 29P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang, D. Chao, W. Mai, Angew. Chem. Int. Ed. 2021, 60, 18247–18255.