High-Performance Pomegranate-Like CuF2 Cathode Derived from Spent Lithium-Ion Batteries
Dr. Xianggang Zhou
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this work
Contribution: Data curation (lead), Formal analysis (lead), Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorDr. Shanshan Xiao
School of Materials Science and Engineering, Jilin Jianzhu University, Changchun, 130118 China
These authors contributed equally to this work
Contribution: Data curation (equal), Funding acquisition (supporting), Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorDr. Dan Yang
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Contribution: Investigation (supporting), Software (supporting)
Search for more papers by this authorCorresponding Author
Prof. Yingqi Li
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Contribution: Conceptualization (lead), Formal analysis (lead), Funding acquisition (lead), Writing - review & editing (lead)
Search for more papers by this authorDr. Ruiqi Yao
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Contribution: Investigation (supporting)
Search for more papers by this authorCorresponding Author
Prof. Xingyou Lang
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun, 130024 China
Contribution: Conceptualization (equal), Formal analysis (equal), Funding acquisition (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Huaqiao Tan
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Contribution: Formal analysis (equal), Funding acquisition (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Yangguang Li
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Contribution: Funding acquisition (equal), Supervision (lead), Writing - review & editing (equal)
Search for more papers by this authorProf. Qing Jiang
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun, 130024 China
Contribution: Supervision (equal), Writing - review & editing (supporting)
Search for more papers by this authorDr. Xianggang Zhou
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this work
Contribution: Data curation (lead), Formal analysis (lead), Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorDr. Shanshan Xiao
School of Materials Science and Engineering, Jilin Jianzhu University, Changchun, 130118 China
These authors contributed equally to this work
Contribution: Data curation (equal), Funding acquisition (supporting), Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorDr. Dan Yang
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Contribution: Investigation (supporting), Software (supporting)
Search for more papers by this authorCorresponding Author
Prof. Yingqi Li
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Contribution: Conceptualization (lead), Formal analysis (lead), Funding acquisition (lead), Writing - review & editing (lead)
Search for more papers by this authorDr. Ruiqi Yao
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Contribution: Investigation (supporting)
Search for more papers by this authorCorresponding Author
Prof. Xingyou Lang
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun, 130024 China
Contribution: Conceptualization (equal), Formal analysis (equal), Funding acquisition (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Huaqiao Tan
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Contribution: Formal analysis (equal), Funding acquisition (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Yangguang Li
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Contribution: Funding acquisition (equal), Supervision (lead), Writing - review & editing (equal)
Search for more papers by this authorProf. Qing Jiang
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun, 130024 China
Contribution: Supervision (equal), Writing - review & editing (supporting)
Search for more papers by this authorGraphical Abstract
Organic electroltyte of spent lithium-ion batteries is utilized as fluorine source to in situ fluorinate the 3D porous Cu foam through a facile and mild solvothermal method. Benefiting from the protective solid-electrolyte interphase (SEI) and cross-linked sodium alginate (SA) layer, the optimized CuF2@void@SEI@SA cathode with pomegranate-like (yolk-shell) structure exhibits large specific capacity and superb cycling stability. This work not only provides new options for exploiting novel materials for large-scale high-density energy storage, the combined utilization of organic electrolyte of spent LIBs also realizes the unity of environmental, social and economic benefits.
Abstract
With the large-scale application of lithium-ion batteries (LIBs), a huge amount of spent LIBs will be generated each year and how to realize their recycling and reuse in a clean and effective way poses a challenge to the society. In this work, using the electrolyte of spent LIBs as solvent, we in situ fluorinate the conductive three-dimensional porous copper foam by a facile solvent-thermal method and then coating it with a cross-linked sodium alginate (SA) layer. Benefiting from the solid-electrolyte interphase (SEI) that accommodating the volume change of internal CuF2 core and SA layer that inhibiting the dissolution of CuF2, the synthesized CuF2@void@SEI@SA cathode with a pomegranate-like structure (yolk-shell) exhibits a large reversible capacity of ~535 mAh g−1 at 0.05 A g−1 and superb cycling stability. This work conforms to the development concept of green environmental protection and comprehensively realizes the unity of environmental, social and economic benefits.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202409255-sup-0001-misc_information.pdf1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. Li, W. Liu, H. Dong, Q. Gui, Z. Hu, Y. Li, J. Liu, Adv. Mater. 2021, 33, 2004959;
- 1bW. Liu, C. Yi, L. Li, S. Liu, Q. Gui, D. Ba, Y. Li, D. Peng, J. Liu, Angew. Chem. Int. Ed. 2021, 133, 13041–13050;
- 1cC. Wu, J. Ou, F. He, J. Ding, W. Luo, M. Wu, H. Zhang, Nano Energy 2019, 65, 104061;
- 1dG. Song, Y. Shi, S. Jiang, H. Pang, Adv. Funct. Mater. 2023, 33, 2303121;
- 1eX. Zhang, Q. Su, G. Du, B. Xu, S. Wang, Z. Chen, L. Wang, W. Huang, H. Pang, Angew. Chem. Int. Ed. 2023, 135, e202304947;
- 1fX. Xu, X. Yue, Y. Chen, Z. Liang, Angew. Chem. Int. Ed. 2023, 62, e202306963.
- 2
- 2aL. Xia, S. Wang, G. Liu, L. Ding, D. Li, H. Wang, S. Qiao, Small 2016, 12, 853–859;
- 2bY. Hou, Z. Huang, Z. Chen, X. Li, A. Chen, P. Li, Y. Wang, C. Zhi, Nano Energy 2022, 97, 107204;
- 2cH. Wang, S. Yuan, D. Ma, X. Zhang, J. Yan, Energy Environ. Sci. 2015, 8, 1660–1681;
- 2dL. Chen, L. Cheng, J. Yu, J. Chu, H. Wang, F. Cui, G. Zhu, Adv. Funct. Mater. 2022, 32, 2209848;
- 2eB. Liu, Q. Zhang, Z. Jin, L. Zhang, L. Li, Z. Gao, C. Wang, H. Xie, Z. Su, Adv. Energy Mater. 2018, 8, 1702347;
- 2fY. Wang, J. Zhu, A. Chen, X. Guo, H. Cui, Z. Chen, Y. Hou, Z. Huang, D. Wang, G. Liang, S. Cao, C. Zhi, Adv. Mater. 2023, 35, 2303165;
- 2gM. Fang, B. Du, X. Zhang, X. Dong, X. Yue, Z. Liang, Angew. Chem. Int. Ed. 2024, 63, e202316839.
- 3B. Niu, Z. Xu, J. Xiao, Y. Qin, Chem. Rev. 2023, 123, 8718–8735.
- 4
- 4aW. Mrozik, M. A. Rajaeifar, O. Heidrich, P Christensen, Energy Environ. Sci. 2021, 14, 6099–6121;
- 4bM. Chen, X. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon, Y. Wang, Joule 2019, 3, 2622–2646.
- 5
- 5aJ. Wang, K. Jia, J. Ma, Z. Liang, Z. Zhuang, Y. Zhao, B. Li, G. Zhou, H. Cheng, Nat. Sustain. 2023, 6, 797–805;
- 5bJ. Wang, J. Ma, Z. Zhuang, Z. Liang, K. Jia, G. Ji, G. Zhou, H. Cheng, Chem. Rev. 2024, 124, 2839–2887;
- 5cJ. Ma, J. Wang, K. Jia, Z. Liang, G. Ji, H. Ji, Y. Zhu, W. Chen, H. Cheng, G. Zhou, Nat. Commun. 2024, 15, 1046;
- 5dZ. Zhuang, J. Li, H. Ji, Z. Piao, X. Wu, G. Ji, S. Liu, J. Ma, D. Tang, N. Zheng, J. Wang, G. Zhou, Adv. Mater. 2024, 36, 2313144;
- 5eG. Ji, D. Tang, J. Wang, Z. Liang, H. Ji, J. Ma, Z. Zhuang, S. Liu, G. Zhou, H. Cheng, Nat. Commun. 2024, 15, 4086.
- 6R. E. Ciez, J. F. Whitacre, Nat. Sustain. 2019, 2, 148–156.
- 7
- 7aE. Fan, L. Li, Z. Wang, J. Lin, Y. Huang, Y. Yao, R. Chen, F. Wu, Chem. Rev. 2020, 120, 7020–7063;
- 7bC. H. Jo, S. T. Myung, J. Power Sources 2019, 426, 259–265.
- 8Q. Sa, E. Gratz, M. He, W. Lu, D. Apelian, Y. Wang, J. Power Sources 2015, 282, 140–145.
- 9
- 9aL. Wang, Z. Wu, J. Zou, P. Gao, X. Niu, H. Li, L. Chen, Joule 2019, 3, 2086–2102;
- 9bW. Cao, J. Zhang, H. Li, Energy Storage Mater. 2020, 26, 46–55.
- 10D. Yan, H. Yang, Y. Bai, Nano Res. 2023, 16, 8173–8190.
- 11F. Badway, A. N. Mansour, N. Pereira, J. F. Al-Sharab, F. Cosandey, I. Plitz, G. G. Amatucci, Chem. Mater. 2007, 19, 4129–4141.
- 12J. K. Seo, H. M. Cho, K. Takahara, K. W. Chapman, O. J. Borkiewicz, M. Sina, Y. S. Meng, Nano Res. 2017, 10, 4232–4244.
- 13Y. Dai, X. Liu, W. Wu, Y. Huang, T. Wang, Z. Song, R. Zhang, W. Luo, Sci. China Mater. 2023, 66, 3039–3045.
- 14D. Mu, Y. Liu, R. Li, Q. Ma, C. Dai, New J. Chem. 2017, 41, 7177–7185.
- 15H. Yang, G. Zhuang, P.Jr. J. Power Sources 2006, 161, 573–579.
- 16Z. Wu, L. Xue, W. Ren, F. Li, L. Wen, H. Cheng, Adv. Funct. Mater. 2012, 22, 3290–3297.
- 17
- 17aD. Kurzydłowski, Crystals 2018, 8, 140;
- 17bT. Yamanaka, Z. Ogumi, T. Abe, J. Phys. Chem. C 2022, 126, 12361–12369.
- 18A. Celik-Kucuk, T. Abe, J. Power Sources 2021, 496, 229828.
- 19
- 19aD. T. Thieu, M. H. Fawey, H. Bhatia, T. Diemant, V. S. K. Chakravadhanula, R. J. Behm, C. Kubel, M. Fichtner, Adv. Funct. Mater. 2017, 27, 1701051;
- 19bJ. Xia, Z. Wang, N. D. Rodrig, B. Nan, J. Zhang, W. Zhang, B. L. Lucht, C. Yang, C. Wang, Adv. Mater. 2022, 34, 2205229;
- 19cC. Lai, K. Chen, M. Lei, J. Hu, S. Chen, C. Li, Adv. Funct. Mater. 2024, 34 2312415;
- 19dT. Guan, L. Zhao, Y. Zhou, X. Qiu, J. Wu, G. Wu, N. Bao, Adv. Energy Mater. 2023, 13, 2301680;
- 19eJ. Casella, J. Morzy, E. Gilshtein, M. Yarema, M. H. Futscher, Y. E. Romanyuk, ACS Nano 2024, 18, 4352–4359;
- 19fM. A. Reddy, B. Breitung, V. S. K. Chakravadhanula, C. Wall, M. Engel, C. Kubel, A. K. Powell, H. Hahn, M. Fichtner, Adv. Energy Mater. 2013, 3, 308–313;
- 19gF. Wu, V. Srot, S. Chen, S. Lorger, P. A. Aken, J. Maier, Y. Yu, Adv. Mater. 2019, 31, 1905146;
- 19hY. Liu, J. Meng, M. Lei, Y. Yu, C. Lai, C. Li, Adv. Funct. Mater. 2023, 33, 2208013;
- 19iJ. Peng, X. Wang, H. Li, L. Chen, F. Wu, Adv. Energy Mater. 2023, 13, 2300706;
- 19jG. Galatolo, O. Alshangiti, C. D. Mino, G. Matthews, A. W. Xiao, G. J. Rees, M. Schart, Y. A. Chart, L. F. Olbrich, M. Pasta, ACS Energy Lett. 2023, 9, 85–92.
- 20M. Yu, N. Chandrasekhar, R. K. M. Raghupathy, K. H. Ly, H. Zhang, E. Dmitrieva, C. Liang, X. Lu, T. D. Kühne, H. Mirhosseini, I. M. Weidinger, X. Feng, J. Am. Chem. Soc. 2020, 142, 19570.
- 21Q. Zong, W. Du, C. Liu, H. Yang, Q. Zhang, Z. Zhou, M. Atif, M. Alsalhi, G. Cao, Nano-Micro Lett. 2021, 13, 116.