Highly Efficient Self-Assembly of Heterometallic [2]Catenanes and Cyclic Bis[2]catenanes via Orthogonal Metal-Coordination Interactions
Qian Feng
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorRui Ding
Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yali Hou
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Zeyuan Zhang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorYafei Zhang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorHaifei Liu
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorDr. Chenxing Guo
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
Search for more papers by this authorProf. Dr. Gang He
Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorDr. Bo Zheng
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 P. R. China
Search for more papers by this authorProf. Dr. Yanmin Zhang
School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Mingming Zhang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorQian Feng
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorRui Ding
Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yali Hou
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Zeyuan Zhang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorYafei Zhang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorHaifei Liu
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorDr. Chenxing Guo
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
Search for more papers by this authorProf. Dr. Gang He
Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorDr. Bo Zheng
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 P. R. China
Search for more papers by this authorProf. Dr. Yanmin Zhang
School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Mingming Zhang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorGraphical Abstract
A series of heterometallic [2]catenanes and cyclic bis[2]catenanes were prepared efficiently via orthogonal metal-coordination-driven self-assembly. Owing to the multiple positively charged nature, as well as the potential synergistic effect of the Cu(I) and Pt(II) metal ions, the cyclic bis[2]catenanes displayed broad-spectrum antibacterial activity.
Abstract
Although catenated cages have been widely constructed due to their unique and elegant topological structures, cyclic catenanes formed by the connection of multiple catenane units have been rarely reported. Herein, based on the orthogonal metal-coordination-driven self-assembly, we prepare a series of heterometallic [2]catenanes and cyclic bis[2]catenanes, whose structures are clearly evidenced by single-crystal X-ray analysis. Owing to the multiple positively charged nature, as well as the potential synergistic effect of the Cu(I) and Pt(II) metal ions, the cyclic bis[2]catenanes display broad-spectrum antibacterial activity. This work not only provides an efficient strategy for the construction of heterometallic [2]catenanes and cyclic bis[2]catenanes but also explores their applications as superior antibacterial agents, which will promote the construction of advanced supramolecular structures for biomedical applications.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202407923-sup-0001-misc_information.pdf3.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS.-S. Jester, M. Famulok, Acc. Chem. Res. 2014, 47, 1700–1709;
- 1bH. V. Schröder, Y. Zhang, A. J. Link, Nat. Chem. 2021, 13, 850–857;
- 1cS. R. Beeren, C. T. McTernan, F. Schaufelberger, Chem 2023, 9, 1378–1412.
- 2
- 2aR. S. Forgan, J.-P. Sauvage, J. F. Stoddart, Chem. Rev. 2011, 111, 5434–5464;
- 2bS. F. van Dongen, S. Cantekin, J. A. Elemans, A. E. Rowan, R. J. M. Nolte, Chem. Soc. Rev. 2014, 43, 99–122;
- 2cJ. F. Stoddart, Angew. Chem. Int. Ed. 2017, 56, 11094–11125; Angew. Chem. 2017, 129, 11244–11277;
- 2dS. D. P. Fielden, D. A. Leigh, S. L. Woltering, Angew. Chem. Int. Ed. 2017, 56, 11166–11194; Angew. Chem. 2017, 129, 11318–11347;
- 2eY. Lu, H. N. Zhang, G. X. Jin, Acc. Chem. Res. 2018, 51, 2148–2158;
- 2fZ. Ashbridge, E. Kreidt, L. Pirvu, F. Schaufelberger, J. H. Stenlid, F. Abild-Pedersen, D. A. Leigh, Science 2022, 375, 1035–1041;
- 2gQ. Chen, K. Zhu, Chem. Soc. Rev. 2024, 53, 5677–5703.
- 3
- 3aL. Fang, M. A. Olson, D. Benitez, E. Tkatchouk, W. A. Goddard III, J. F. Stoddart, Chem. Soc. Rev. 2010, 39, 17–29;
- 3bL. L. F. Hart, J. E. Hertzog, P. M. Rauscher, B. W. Rawe, M. M. Tranquilli, S. J. Rowan, Nat. Rev. Mater. 2021, 6, 508–530;
- 3cChen, X. Sheng, G. Li, F. Huang, Chem. Soc. Rev. 2022, 51, 7046–7065;
- 3dG. Liu, P. M. Rauscher, B. W. Rawe, M. M. Tranquilli, S. J. Rowan, Chem. Soc. Rev. 2022, 51, 4928–4948;
- 3eZ. Luo, X. Zhang, J. Zhao, R. Bai, C. Wang, Y. Wang, D. Zhao, X. Yan, Angew. Chem. Int. Ed. 2023, e202306489; Angew. Chem. 2023, e202306489.
- 4
- 4aJ.-P. Sauvage, Angew. Chem. Int. Ed. 2017, 56, 11080–11093; Angew. Chem. 2017, 129, 11228–11242;
- 4bS. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. Nussbaumer, Chem. Rev. 2015, 115, 10081–10206.
- 5
- 5aC. S. Wood, T. K. Ronson, A. M. Belenguer, J. J. Holstein, J. R. Nitschke, Nat. Chem. 2015, 7, 354–358;
- 5bG. Gil-Ramírez, D. A. Leigh, A. J. Stephens, Angew. Chem. Int. Ed. 2015, 54, 6110–6150; Angew. Chem. 2015, 127, 6208–6249;
- 5cA. Li, Z. Tan, Y. Hu, Z. Lu, J. Yuan, X. Li, J. Xie, J. Zhang, K. Zhu, J. Am. Chem. Soc. 2022, 144, 2085–2089;
- 5dZ. Cui, Q.-S. Mu, X. Gao, G.-X. Jin, J. Am. Chem. Soc. 2023, 145, 725–731;
- 5eY. W. Zhang, Y. Lu, L. Y. Sun, P. D. Dutschke, M. M. Gan, L. Zhang, A. Hepp, Y. F. Han, F. E. Hahn, Angew. Chem. Int. Ed. 2023, e202312323; Angew. Chem. 2023, e202312323;
- 5fW. L. Shan, H. H. Hou, N. Si, C. X. Wang, G. Yuan, X. Gao, G. X. Jin, Angew. Chem. Int. Ed. 2024, e202402198; Angew. Chem. 2024, e202402198.
- 6
- 6aH. Li, H. Zhang, A. D. Lammer, M. Wang, X. Li, V. M. Lynch, J. L. Sessler, Nat. Chem. 2015, 7, 1003–1008;
- 6bR. Zhu, I. Regeni, J. J. Holstein, B. Dittrich, M. Simon, S. Prevost, M. Gradzielski, G. H. Clever, Angew. Chem. Int. Ed. 2018, 57, 13652–13656; Angew. Chem. 2018, 130, 13840–13844;
- 6cY.-W. Zhang, S. Bai, Y.-Y. Wang, Y.-F. Han, J. Am. Chem. Soc. 2020, 142, 13614–13621;
- 6dY. Wang, Y. Zhang, Z. Zhou, R. T. Vanderlinden, B. Li, B. Song, X. Li, L. Cui, J. Li, X. Jia, J. Fang, C. Li, P. J. Stang, Nat. Commun. 2020, 11, 2727;
- 6eB. P. Benke, T. Kirschbaum, J. Graf, J. H. Gross, M. Mastalerz, Nat. Chem. 2022, 15, 413–423;
- 6fY. Wang, T. Liu, Y.-Y. Zhang, B. Li, L. Tan, C. Li, X.-C. Shen, J. Li, Nat. Commun. 2024, 15, 1363.
- 7
- 7aF. Ibukuro, M. Fujita, K. Yamaguchi, J.-P. Sauvage, J. Am. Chem. Soc. 1999, 121, 11014–11015;
- 7bC. Dietrich-Buchecker, N. Geum, A. Hori, M. Fujita, S. Sakamoto, K. Yamaguchie, J.-P. Sauvage, Chem. Commun. 2001, 1182–1183;
- 7cC. Dietrich-Buchecker, B. Colasson, M. Fujita, A. Hori, N. Geum, S. Sakamoto, K. Yamaguchi, J.-P. Sauvage, J. Am. Chem. Soc. 2003, 125, 5717–5725;
- 7dA. Hori, T. Sawada, K. Yamashita, M. Fujita, Angew. Chem. Int. Ed. 2005, 44, 4896–4899; Angew. Chem. 2005, 117, 4974–4977;
- 7eN. H. Evans, P. D. Beer, Chem. Soc. Rev. 2014, 43, 4658–4683;
- 7fY. Y. Fan, D. Chen, Z. A. Huang, J. Zhu, C. H. Tung, L. Z. Wu, H. Cong, Nat. Commun. 2018, 9, 3037;
- 7gR. Bai, Z. Zhang, W. Di, X. Yang, J. Zhao, H. Ouyang, G. Liu, X. Zhang, L. Cheng, Y. Cao, W. Yu, X. Yan, J. Am. Chem. Soc. 2023, 145, 9011–9020.
- 8
- 8aY. Liu, Y. Ma, Y. Zhao, X. Sun, F. Gándara, H. Furukawa, Z. Liu, H. Zhu, C. Zhu, K. Suenaga, P. Oleynikov, A. S. Alshammari, X. Zhang, O. Terasaki, O. M. Yaghi, Science 2016, 351, 365–369;
- 8bY. Liu, Y. Ma, J. Yang, C. S. Diercks, N. Tamura, F. Jin, O. M. Yaghi, J. Am. Chem. Soc. 2018, 140, 16015–16019;
- 8cY. Liu, C. S. Diercks, Y. Ma, H. Lyu, C. Zhu, S. A. Alshmimri, S. Alshihri, O. M. Yaghi, J. Am. Chem. Soc. 2019, 141, 677–683;
- 8dD. P. August, R. A. W. Dryfe, S. J. Haigh, P. R. C. Kent, D. A. Leigh, J. F. Lemonnier, Z. Li, C. A. Muryn, L. I. Palmer, Y. Song, G. F. S. Whitehead, R. J. Young, Nature 2020, 588, 429–435;
- 8eZ. H. Zhang, B. J. Andreassen, D. P. August, D. A. Leigh, L. Zhang, Nat. Mater. 2022, 21, 275–283.
- 9
- 9aY. Inokuma, M. Kawano, M. Fujita, Nat. Chem. 2011, 3, 349–358;
- 9bC. J. Brown, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Rev. 2015, 115, 3012–3035;
- 9cD. Fujita, Y. Ueda, S. Sato, N. Mizuno, T. Kumasaka, M. Fujita, Nature 2016, 540, 563–566;
- 9dS.-L. Huang, T. S. A. Hor, G.-X. Jin, Coord. Chem. Rev. 2017, 333, 1–26;
- 9eS. Chakraborty, G. R. Newkome, Chem. Soc. Rev. 2018, 47, 3991–4016;
- 9fX. Jing, C. He, L. Zhao, C. Duan, Acc. Chem. Res. 2019, 52, 100–109;
- 9gY. Sun, C. Chen, J. Liu, P. J. Stang, Chem. Soc. Rev. 2020, 49, 3889–3919;
- 9hS. Ibáñez, M. Poyatos, E. Peris, Acc. Chem. Res. 2020, 53, 1401–1413;
- 9iS. Ibanez, C. Vicent, E. Peris, Angew. Chem. Int. Ed. 2021, e202112513; Angew. Chem. 2021, e202112513;
- 9jX.-Z. Li, C.-B. Tian, Q.-F. Sun, Chem. Rev. 2022, 122, 6374–6458;
- 9kC. T. McTernan, J. A. Davies, J. R. Nitschke, Chem. Rev. 2022, 122, 10393–10437;
- 9lA. B. Sainaba, M. Venkateswarulu, P. Bhandari, J. K. Clegg, P. S. Mukherjee, Angew. Chem. Int. Ed. 2023, e202315572; Angew. Chem. 2023, e202315572;
- 9mH.-Y. Lin, Y.-T. Wang, X. Shi, H.-B. Yang, L. Xu, Chem. Soc. Rev. 2023, 52, 1129–1154;
- 9nR. Banerjee, D. Chakraborty, P. S. Mukherjee, J. Am. Chem. Soc. 2023, 145, 7692–7711;
- 9oI. Regeni, R. Chowdhury, K. Terlinden, S. Horiuchi, J. J. Holstein, S. Feldmann, G. H. Clever, Angew. Chem. Int. Ed. 2023, 62, e202308288; Angew. Chem. 2023, 135, e202308288;
- 9pE. Benchimol, J. Tessarolo, G. H. Clever, Nat. Chem. 2024, 16, 13–21.
- 10G.-Y. Wu, X. Shi, H. Phan, H. Qu, Y.-X. Hu, G.-Q. Yin, X.-L. Zhao, X. Li, L. Xu, Q. Yu, H.-B. Yang, Nat. Commun. 2020, 11, 3178.
- 11
- 11aW.-X. Gao, H.-N. Zhang, G.-X. Jin, Coord. Chem. Rev. 2019, 386, 69–84;
- 11bD. Yang, J. L. Greenfield, T. K. Ronson, L. K. S. von Krbek, L. Yu, J. R. Nitschke, J. Am. Chem. Soc. 2020, 142, 19856–19861;
- 11cJ. P. Carpenter, T. K. Ronson, F. J. Rizzuto, F. J. Rizzuto, T. Héliot, P. Grice, J. R. Nitschke, J. Am. Chem. Soc. 2022, 144, 8467–8473;
- 11dL. S. Lisboa, D. Preston, C. J. McAdam, L. J. Wright, C. G. Hartinger, J. D. Crowley, Angew. Chem. Int. Ed. 2022, 61, e202201700; Angew. Chem. 2022, 134, e202201700;
- 11eA. C. Pearcy, L. S. Lisboa, D. Preston, N. B. Page, T. Lawrence, L. J. Wright, C. G. Hartinger, J. D. Crowley, Chem. Sci. 2023, 14, 8615–8623;
- 11fL. K. Moree, L. A. Faulkne, J. D. Crowley, Chem. Soc. Rev. 2024, 53, 25–46;
- 11gY.-L. Lai, M. Xie, X.-C. Zhou, X.-Z. Wang, X.-W. Zhu, D. Luo, X.-P. Zhou, D. Li, Angew. Chem. Int. Ed. 2024, e20242829; Angew. Chem. 2024, e20242829.
- 12
- 12aY.-R. Zheng, Z. Zhao, M. Wang, K. Ghosh, J. B. Pollock, T. R. Cook, P. J. Stang, J. Am. Chem. Soc. 2010, 132, 16873–16882;
- 12bZ. Zhang, Z. Zhao, L. Wu, S. Lu, S. Ling, G. Li, L. Xu, L. Ma, Y. Hou, X. Wang, X. Li, G. He, K. Wang, B. Zou, M. Zhang, J. Am. Chem. Soc. 2020, 142, 2592–2600;
- 12cY. Hou, Z. Zhang, S. Lu, J. Yuan, Q. Zhu, W. P. Chen, S. Ling, X. Li, Y. Z. Zheng, K. Zhu, M. Zhang, J. Am. Chem. Soc. 2020, 142, 18763–18768;
- 12dC. Mu, Z. Zhang, Y. Hou, H. Liu, L. Ma, X. Li, S. Ling, G. He, M. Zhang, Angew. Chem. Int. Ed. 2021, 60, 12293–12297; Angew. Chem. 2021, 133, 12401–12405;
- 12eH. Liu, Z. Zhang, C. Mu, L. Ma, H. Yuan, S. Ling, H. Wang, X. Li, M. Zhang, Angew. Chem. Int. Ed. 2022, e202207289; Angew. Chem. 2022, e202207289;
- 12fQ. Feng, T. Yang, L. Ma, X. Li, H. Yuan, M. Zhang, Y. Zhang, L. Fan, ACS Appl. Mater. Interfaces 2022, 14, 38594–38603;
- 12gC. Mu, L. Zhang, G. Li, Y. Hou, H. Liu, Z. Zhang, R. Zhang, T. Gao, Y. Qian, C. Guo, G. He, M. Zhang, Angew. Chem. Int. Ed. 2023, e202311137; Angew. Chem. 2023, e202311137;
- 12hR. Zhang, D. Hu, Y. Fu, Q. Feng, C. Mu, K. Gao, H. Ma, M. Liu, M. Zhang, Aggregate 2023, e408;
- 12iK. Gao, Y. Cheng, Z. Zhang, X. Huo, C. Guo, W. Fu, J. Xu, G.-L. Hou, X. Shang, M. Zhang, Angew. Chem. Int. Ed. 2024, e202319488; Angew. Chem. 2024, e202319488;
- 12jH. Liu, C. Guo, L. Li, Z. Zhang, Y. Hou, C. Mu, G. Hou, Z. Zhang, H. Wang, X. Li, M. Zhang, J. Am. Chem. Soc. 2024, 146, 15787–15795.
- 13
- 13aC. O. Dietrich-Buchecker, J.-P. Sauvage, J. M. Kern, J. Am. Chem. Soc. 1984, 106, 3043–3045;
- 13bB. Mohr, M. Weck, J.-P. Sauvage, R. H. Grubbs, Angew. Chem. Int. Ed. 1997, 36, 1308–1310; Angew. Chem. 1997, 109, 1365–1367;
- 13cF. Durola, V. Heitz, F. Reviriego, C. Roche, J. P. Sauvage, A. Sour, Y. Trolez, Acc. Chem. Res. 2014, 47, 633–645;
- 13dF. Niess, V. Duplan, J. P. Sauvage, J. Am. Chem. Soc. 2014, 136, 5876–5879.
- 14X. Mo, Y. Deng, S. K. Lai, X. Gao, H. L. Yu, K. H. Low, Z. Guo, H. L. Wu, H. Y. Au-Yeung, E. C. M. Tse, J. Am. Chem. Soc. 2023, 145, 6087–6099.
- 15
- 15aC. Liu, M. Wang, T. Zhang, H. Sun, Coord. Chem. Rev. 2004, 248, 147–168;
- 15bP. Jeyakkumar, Y. Liang, M. Guo, S. Lu, D. Xu, X. Li, B. Guo, G. He, D. Chu, M. Zhang, Angew. Chem. Int. Ed. 2020, 59, 15199–15203; Angew. Chem. 2020, 132, 15311–15315.
- 16
- 16aH. Wang, X. Qian, K. Wang, M. Su, W.-W. Haoyang, X. Jiang, R. Brzozowski, M. Wang, X. Gao, Y. Li, B. Xu, P. Eswara, X.-Q. Hao, W. Gong, J.-L. Hou, J. Cai, X. Li, Nat. Commun. 2018, 9, 1815;
- 16bH. Wang, C.-H. Liu, K. Wang, M. Wang, H. Yu, S. Kandapal, R. Brzozowski, B. Xu, M. Wang, S. Lu, X.-Q. Hao, P. Eswara, M.-P. Nieh, J. Cai, X. Li, J. Am. Chem. Soc. 2019, 141, 16108–16116.
- 17
- 17aC. Weidenmaier, A. Peschel, Nat. Rev. Microbiol. 2008, 6, 276;
- 17bL. Gao, H. Wanga, B. Zheng, F. Huang, Giant 2021, 7, 100066.
- 18Deposition Numbers 2330856 (for 3), 2330863 (for 6 a) and 2330875 (for 8 a) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.