Zinc-Ion Anchor Induced Highly Reversible Zn Anodes for High Performance Zn-Ion Batteries
Dr. Shuang Zhou
Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan, China
These authors contributed equally to this work.
Contribution: Data curation (equal), Investigation (supporting), Project administration (supporting), Resources (supporting), Writing - original draft (lead)
Search for more papers by this authorXinyu Meng
Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan, China
These authors contributed equally to this work.
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (supporting), Resources (lead), Validation (equal), Writing - original draft (supporting)
Search for more papers by this authorYining Chen
Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan, China
Contribution: Resources (supporting)
Search for more papers by this authorJianwen Li
Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan, China
Contribution: Visualization (supporting)
Search for more papers by this authorProf. Shangyong Lin
School of Mineral Processing and Bioengineering, Central South University, 410083 Changsha, Hunan, China
Contribution: Formal analysis (supporting)
Search for more papers by this authorProf. Chao Han
Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan, China
Contribution: Resources (supporting)
Search for more papers by this authorProf. Xiaobo Ji
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, Hunan, China
Contribution: Project administration (supporting)
Search for more papers by this authorCorresponding Author
Prof. Zhi Chang
Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan, China
Contribution: Formal analysis (supporting), Project administration (supporting), Writing - original draft (supporting)
Search for more papers by this authorCorresponding Author
Prof. Anqiang Pan
Xinjiang Engineering Research Center of Environmental and Functional Materials, School of Materials Science and Engineering, Xinjiang University, 830046 Urumqi, Xinjiang, China
Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan, China
Contribution: Funding acquisition (lead), Project administration (supporting), Writing - original draft (supporting)
Search for more papers by this authorDr. Shuang Zhou
Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan, China
These authors contributed equally to this work.
Contribution: Data curation (equal), Investigation (supporting), Project administration (supporting), Resources (supporting), Writing - original draft (lead)
Search for more papers by this authorXinyu Meng
Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan, China
These authors contributed equally to this work.
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (supporting), Resources (lead), Validation (equal), Writing - original draft (supporting)
Search for more papers by this authorYining Chen
Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan, China
Contribution: Resources (supporting)
Search for more papers by this authorJianwen Li
Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan, China
Contribution: Visualization (supporting)
Search for more papers by this authorProf. Shangyong Lin
School of Mineral Processing and Bioengineering, Central South University, 410083 Changsha, Hunan, China
Contribution: Formal analysis (supporting)
Search for more papers by this authorProf. Chao Han
Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan, China
Contribution: Resources (supporting)
Search for more papers by this authorProf. Xiaobo Ji
College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, Hunan, China
Contribution: Project administration (supporting)
Search for more papers by this authorCorresponding Author
Prof. Zhi Chang
Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan, China
Contribution: Formal analysis (supporting), Project administration (supporting), Writing - original draft (supporting)
Search for more papers by this authorCorresponding Author
Prof. Anqiang Pan
Xinjiang Engineering Research Center of Environmental and Functional Materials, School of Materials Science and Engineering, Xinjiang University, 830046 Urumqi, Xinjiang, China
Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan, China
Contribution: Funding acquisition (lead), Project administration (supporting), Writing - original draft (supporting)
Search for more papers by this authorGraphical Abstract
Zn-ion anchoring strategy was proposed to manipulate the coordination structure of solvated Zn-ions and guide the Zn-ion depositional behavior. Specifically, the amphoteric charged ion additives act as zinc-ion anchors, guiding the uniform zinc-ion distribution by using its positively charged groups. While the negatively charged groups reduces the active water molecules within solvation sheaths of Zn-ions, enabling AZMBs with high reversibility and extra-long lifespans.
Abstract
Unstable Zn interface with serious detrimental parasitic side-reactions and uncontrollable Zn dendrites severely plagues the practical application of aqueous zinc-ion batteries. The interface stability was closely related to the electrolyte configuration and Zn2+ depositional behavior. In this work, a unique Zn-ion anchoring strategy is originally proposed to manipulate the coordination structure of solvated Zn-ions and guide the Zn-ion depositional behavior. Specifically, the amphoteric charged ion additives (denoted as DM), which act as zinc-ion anchors, can tightly absorb on the Zn surface to guide the uniform zinc-ion distribution by using its positively charged −NR4+ groups. While the negatively charged −SO3− groups of DM on the other hand, reduces the active water molecules within solvation sheaths of Zn-ions. Benefiting from the special synergistic effect, Zn metal exhibits highly ordered and compact (002) Zn deposition and negligible side-reactions. As a result, the advanced Zn||Zn symmetric cell delivers extraordinarily 7000 hours long lifespan (0.25 mA cm−2, 0.25 mAh cm−2). Additionally, based on this strategy, the NH4V4O10||Zn pouch-cell with low negative/positive capacity ratio (N/P ratio=2.98) maintains 80.4 % capacity retention for 180 cycles. A more practical 4 cm*4 cm sized pouch-cell could be steadily cycled in a high output capacity of 37.0 mAh over 50 cycles.
Conflict of interests
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202403050-sup-0001-misc_information.pdf1.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Yuan, R. Sharpe, K. He, C. Li, M. T. Saray, T. Liu, W. Yao, M. Cheng, H. Jin, S. Wang, K. Amine, R. Shahbazian Yassar, M. S. Islam, J. Lu, Nat. Sustain. 2022, 5, 890–898;
- 1bX. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao, H. Liang, H. Wang, D. Chao, F. Wang, Y. Qiao, H. Zhou, S.-G. Sun, Joule 2023, 7, 1145–1175;
- 1cW. Wang, S. Chen, X. Liao, R. Huang, F. Wang, J. Chen, Y. Wang, F. Wang, H. Wang, Nat. Commun. 2023, 14, 5443.
- 2
- 2aZ. Zhao, R. Wang, C. Peng, W. Chen, T. Wu, B. Hu, W. Weng, Y. Yao, J. Zeng, Z. Chen, P. Liu, Y. Liu, G. Li, J. Guo, H. Lu, Z. Guo, Nat. Commun. 2021, 12, 6606;
- 2bS. Zhou, Y. Wang, H. Lu, Y. Zhang, C. Fu, I. Usman, Z. Liu, M. Feng, G. Fang, X. Cao, S. Liang, A. Pan, Adv. Funct. Mater. 2021, 31, 2104361.
- 3Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun, Y. Tang, X. Ji, H. Wang, Nat. Commun. 2020, 11, 3961.
- 4
- 4aW. Zhang, G. J. He, Angew. Chem. Int. Ed. 2023, 62, e202218466;
- 4bM. Zhou, S. Guo, J. Li, X. Luo, Z. Liu, T. Zhang, X. Cao, M. Long, B. Lu, A. Pan, G. Fang, J. Zhou, S. Liang, Adv. Mater. 2021, 33, 2100187.
- 5Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang, X. Ji, H. Wang, Angew. Chem. Int. Ed. 2019, 58, 15841–15847.
- 6
- 6aH. Yu, Y. Zeng, N. W. Li, D. Luan, L. Yu, X. W. Lou, Sci. Adv. 2022, 8, eabm5766;
- 6bY. Zhang, J. D. Howe, S. Ben-Yoseph, Y. Wu, N. Liu, ACS Energy Lett. 2021, 6, 404–412;
- 6cB. F. Cui, X. P. Han, W. B. Hu, Small Structures 2021, 2, 2000128.
- 7Y. Li, X. Peng, X. Li, H. Duan, S. Xie, L. Dong, F. Kang, Adv. Mater. 2023, 2300019.
- 8J. Cao, D. Zhang, C. Gu, X. Zhang, M. Okhawilai, S. Wang, J. Han, J. Qin, Y. Huang, Nano Energy 2021, 89, 106322.
- 9X. Guo, Z. Zhang, J. Li, N. Luo, G. L. Chai, T. S. Miller, F. Lai, P. Shearing, D. J. L. Brett, D. Han, Z. Weng, G. He, I. P. Parkin, ACS Energy Lett. 2021, 6, 395–403.
- 10F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu, C. Wang, Nat. Mater. 2018, 17, 543–549.
- 11J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin, Y. Huang, Energy Environ. Sci. 2022, 15, 499–528.
- 12C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, ACS Energy Lett. 2021, 6, 1015–1033.
- 13H. Liu, J. Li, D. Wei, X. Liu, Z. Cai, H. Zhang, Z. Lv, L. Chen, H. Li, H. Luo, Y. Zhao, H. Yu, X. Wang, F. Chen, G. Zhang, H. Duan, Adv. Funct. Mater. 2023, 33, 2300419.
- 14F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. Chen, Nat. Commun. 2018, 9, 1656.
- 15X. Guo, Z. Zhang, J. Li, N. Luo, G.-L. Chai, T. S. Miller, F. Lai, P. Shearing, D. J. Brett, D. Han, ACS Energy Lett. 2021, 6, 395–403.
- 16G. Chang, S. Liu, Y. Fu, X. Hao, W. Jin, X. Ji, J. Hu, Adv. Mater. Interfaces 2019, 6, 1901358.
- 17M. Yan, N. Dong, X. Zhao, Y. Sun, H. Pan, ACS Energy Lett. 2021, 6, 3236–3243.
- 18D. Feng, F. Cao, L. Hou, T. Li, Y. Jiao, P. Wu, Small 2021, 17, 2103195.
- 19T. Zhou, Y. Mu, L. Chen, D. Li, W. Liu, C. Yang, S. Zhang, Q. Wang, P. Jiang, G. Ge, Energy Storage Mater. 2022, 45, 777–785.
- 20P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang, D. Chao, W. Mai, Angew. Chem. Int. Ed. 2021, 133, 18395–18403.
- 21T. Zhang, Q. Wang, W. Luan, X. Li, X. Chen, D. Ding, Z. Shen, M. Qiu, Z. Cui, Y. Fan, Chin. J. Chem. Eng. 2022, 42, 227–235.
- 22H. M. Yu, D. P. Chen, X. Y. Ni, P. Qing, C. S. Yan, W. F. Wei, J. M. Ma, X. B. Ji, Y. J. Chen, L. B. Chen, Energy Environ. Sci. 2023, 16, 2684–2695.
- 23
- 23aS. Aleid, M. C. Wu, R. Y. Li, W. B. Wang, C. L. Zhang, L. B. Zhang, P. Wang, ACS Materials Lett. 2022, 4, 511–520;
- 23bL. D. Blackman, P. A. Gunatillake, P. Cass, K. E. S. Locock, Chem. Soc. Rev. 2019, 48, 757–770.
- 24T. C. Li, C. Lin, M. Luo, P. Wang, D. S. Li, S. Li, J. Zhou, H. Y. Yang, ACS Energy Lett. 2023, 8, 3258–3268.
- 25
- 25aX. Zhao, Y. Wang, C. Huang, Y. Gao, M. Huang, Y. Ding, X. Wang, Z. Si, D. Zhou, F. Kang, Angew. Chem. Int. Ed. 2023, 62, e202312193;
- 25bP. Xiong, Y. Kang, N. Yao, X. Chen, H. Mao, W. S. Jang, D. M. Halat, Z. H. Fu, M. H. Jung, H. Y. Jeong, Y. M. Kim, J. A. Reimer, Q. Zhang, H. S. Park, ACS Energy Lett. 2023, 8, 1613–1625.
- 26
- 26aZ. Wu, M. Li, Y. Tian, H. Chen, S.-J. Zhang, C. Sun, C. Li, M. Kiefel, C. Lai, Z. Lin, S. Zhang, Nano-Micro Lett. 2022, 14, 110;
- 26bP. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang, D. Chao, W. Mai, Angew. Chem. Int. Ed. 2021, 60, 18247–18255.
- 27
- 27aH. J. Yang, Y. Qiao, Z. Chang, H. Deng, P. He, H. S. Zhou, Adv. Mater. 2020, 32, 2004240;
- 27bH. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu, P. He, H. Zhou, Angew. Chem. Int. Ed. 2020, 59, 9377–9381.
- 28Y. Q. Lv, M. Zhao, Y. D. Du, Y. Kang, Y. Xiao, S. M. Chen, Energy Environ. Sci. 2022, 15, 4748–4760.
- 29
- 29aK. Zhao, G. Fan, J. Liu, F. Liu, J. Li, X. Zhou, Y. Ni, M. Yu, Y. M. Zhang, H. Su, Q. Liu, F. Cheng, J. Am. Chem. Soc. 2022, 144, 11129–11137;
- 29bX. Zeng, J. Mao, J. Hao, J. Liu, S. Liu, Z. Wang, Y. Wang, S. Zhang, T. Zheng, J. Liu, P. Rao, Z. Guo, Adv. Mater. 2021, 33, 2007416;
- 29cP. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang, D. Chao, W. Mai, Angew. Chem. Int. Ed. 2021, 60, 18247–18255;
- 29dP. Wang, X. Xie, Z. Xing, X. Chen, G. Fang, B. Lu, J. Zhou, S. Liang, H. J. Fan, Adv. Energy Mater. 2021, 11, 2101158;
- 29eR. Sun, D. Han, C. Cui, Z. Han, X. Guo, B. Zhang, Y. Guo, Y. Liu, Z. Weng, Q.-H. Yang, Angew. Chem. Int. Ed. 2023, 62, e202303557;
- 29fY. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui, J. Luo, Energy Environ. Sci. 2021, 14, 3609–3620;
- 29gR. Yao, L. Qian, Y. Sui, G. Zhao, R. Guo, S. Hu, P. Liu, H. Zhu, F. Wang, C. Zhi, C. Yang, Adv. Energy Mater. 2022, 12, 2102780;
- 29hL. Qian, W. T. Yao, R. Yao, Y. M. Sui, H. J. Zhu, F. C. Wang, J. W. Zhao, C. Y. Zhi, C. Yang, Adv. Funct. Mater. 2021, 31, 2105736;
- 29iY. Liu, J. Hu, Q. Lu, M. Hantusch, H. Zhang, Z. Qu, H. Tang, H. Dong, O. G. Schmidt, R. Holze, M. Zhu, Energy Storage Mater. 2022, 47, 98–104;
- 29jZ. Liu, R. Wang, Q. Ma, J. Wan, S. Zhang, L. Zhang, H. Li, Q. Luo, J. Wu, T. Zhou, J. Mao, L. Zhang, C. Zhang, Z. Guo, Adv. Funct. Mater. 2023, 2214538;
- 29kK. Wang, F. Liu, Q. Li, J. Zhu, T. Qiu, X.-X. Liu, X. Sun, Chem. Eng. J. 2023, 452, 139577;
- 29lR. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao, L. Qie, Y. Huang, Nat. Commun. 2022, 13, 3252;
- 29mM. J. Qiu, P. Sun, A. M. Qin, G. F. Cui, W. J. Mai, Energy Storage Mater. 2022, 49, 463–470.
- 30S. Zhou, X. Meng, C. Fu, D. Xu, J. Li, Q. He, S. Lin, S. Liang, Z. Chang, A. Pan, Small 2023, 2303457.