A Rigid Multiple Resonance Thermally Activated Delayed Fluorescence Core Toward Stable Electroluminescence and Lasing
Corresponding Author
Dr. Xun Tang
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorMingchen Xie
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorDr. Zesen Lin
Organic Optoelectronics Unit, Okinawa Institute of Science and Technology, Graduate University, 1919-1 Tancha, Kunigami-gun, Okinawa, Onna-son, 904-0495 Japan
Search for more papers by this authorDr. Kirill Mitrofanov
Organic Optoelectronics Unit, Okinawa Institute of Science and Technology, Graduate University, 1919-1 Tancha, Kunigami-gun, Okinawa, Onna-son, 904-0495 Japan
Search for more papers by this authorTuul Tsagaantsooj
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorCorresponding Author
Dr. Yi-Ting Lee
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Department of Chemistry, Soochow University, 70 Linhsi Rd., Shihlin, Taipei, Taiwan
Search for more papers by this authorProf. Ryota Kabe
Organic Optoelectronics Unit, Okinawa Institute of Science and Technology, Graduate University, 1919-1 Tancha, Kunigami-gun, Okinawa, Onna-son, 904-0495 Japan
Search for more papers by this authorProf. Atula S. D. Sandanayaka
Department of Physical Sciences and Technologies, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, 70140 Sri Lanka
Search for more papers by this authorProf. Toshinori Matsushima
International Institute for Carbon-Neutral Energy Research (WPI−I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorProf. Takuji Hatakeyama
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
Search for more papers by this authorCorresponding Author
Prof. Chihaya Adachi
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
International Institute for Carbon-Neutral Energy Research (WPI−I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorCorresponding Author
Dr. Xun Tang
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorMingchen Xie
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorDr. Zesen Lin
Organic Optoelectronics Unit, Okinawa Institute of Science and Technology, Graduate University, 1919-1 Tancha, Kunigami-gun, Okinawa, Onna-son, 904-0495 Japan
Search for more papers by this authorDr. Kirill Mitrofanov
Organic Optoelectronics Unit, Okinawa Institute of Science and Technology, Graduate University, 1919-1 Tancha, Kunigami-gun, Okinawa, Onna-son, 904-0495 Japan
Search for more papers by this authorTuul Tsagaantsooj
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorCorresponding Author
Dr. Yi-Ting Lee
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Department of Chemistry, Soochow University, 70 Linhsi Rd., Shihlin, Taipei, Taiwan
Search for more papers by this authorProf. Ryota Kabe
Organic Optoelectronics Unit, Okinawa Institute of Science and Technology, Graduate University, 1919-1 Tancha, Kunigami-gun, Okinawa, Onna-son, 904-0495 Japan
Search for more papers by this authorProf. Atula S. D. Sandanayaka
Department of Physical Sciences and Technologies, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, 70140 Sri Lanka
Search for more papers by this authorProf. Toshinori Matsushima
International Institute for Carbon-Neutral Energy Research (WPI−I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorProf. Takuji Hatakeyama
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
Search for more papers by this authorCorresponding Author
Prof. Chihaya Adachi
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
International Institute for Carbon-Neutral Energy Research (WPI−I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorGraphical Abstract
A promising rigid and stable multiple-resonance thermally activated delayed fluorescence lasing core CzBN was proposed. Benefitting from the enhanced molecular rigidity, photo-, thermal-stability, and effective separation of excited-state absorptions, its derivative CzBNPh demonstrated a low lasing threshold of 0.68 μJ cm−2 in distributed feedback resonators. Furthermore, CzBNPh exhibited much improved stability in electroluminescent and lasing performance.
Abstract
The investigation of organic light-emitting diodes (OLEDs) and organic laser devices with thermally activated delayed fluorescence (TADF) molecules is emerging due to the potential of harnessing triplets. In this work, a boron/nitrogen multiple-resonance TADF polycyclic framework fusing carbazole units (CzBNPh) was proposed. CzBNPh exhibited a narrowband emission (<30 nm), a unity photoluminescence quantum yield, and a fast radiative rate. Consequently, CzBNPh demonstrated a low distributed feedback (DFB) lasing threshold of 0.68 μJ cm−2. Furthermore, the stimulated emission zone of CzBNPh was effectively separated from its singlet and triplet absorption, thereby minimizing the singlet-triplet annihilation under long-pulsed excitation ranging from 20 μs to 2.5 ms. Significantly, the enhanced rigid molecular conformation, thermal stability, and photo-stability resulted in improved lasing and electroluminescence stability compared to that of 5,9-diphenyl-5,9-diaza-13b-boranaphtho[3,2,1-de]anthracene (DABNA)-core. These findings indicate the potential of CzBN-core as a promising framework for achieving long-pulsed wave and electrically-pumped lasing in the future.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202315210-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1I. D. W. Samuel, G. A. Turnbull, Chem. Rev. 2007, 107, 1272–1295.
- 2E. G. Brock, P. Csavinszky, E. Hormats, H. C. Nedderman, D. Stirpe, F. Unterleitner, J. Chem. Phys. 1961, 35, 759–760.
- 3A. J. C. Kuehne, M. C. Gather, Chem. Rev. 2016, 116, 12823–12864.
- 4C. Adachi, A. S. D. Sandanayaka, CCS Chem. 2020, 2, 1203–1216.
- 5N. Tessler, G. J. Denton, R. H. Friend, Nature 1996, 382, 695–697.
- 6V. G. Kozlov, V. Bulović, P. E. Burrows, S. R. Forrest, Nature 1997, 389, 362–364.
- 7S. Chénais, S. Forget, Polym. Int. 2012, 61, 390–406.
- 8O. Mhibik, T. Leang, A. Siove, S. Forget, S. Chénais, Appl. Phys. Lett. 2013, 102, 041112.
- 9M. T. Hill, M. C. Gather, Nat. Photonics 2014, 8, 908–918.
- 10J.-J. Wu, X.-D. Wang, L.-S. Liao, ACS Photonics 2019, 6, 2590–2599.
- 11Y. Jiang, Y.-Y. Liu, X. Liu, H. Lin, K. Gao, W.-Y. Lai, W. Huang, Chem. Soc. Rev. 2020, 49, 5885–5944.
- 12C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913–915.
- 13M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151–154.
- 14H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234–238.
- 15O. G. Peterson, S. A. Tuccio, B. B. Snavely, Appl. Phys. Lett. 1970, 17, 245–247.
- 16Y. Zhang, S. R. Forrest, Phys. Rev. B 2011, 84, 241301.
- 17T. Rabe, K. Gerlach, T. Riedl, H.-H. Johannes, W. Kowalsky, J. Niederhofer, W. Gries, J. Wang, T. Weimann, P. Hinze, F. Galbrecht, U. Scherf, Appl. Phys. Lett. 2006, 89, 081115.
- 18A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, K. Yoshida, M. Inoue, T. Fujihara, K. Goushi, J.-C. Ribierre, C. Adachi, Sci. Adv. 2017, 3, e1602570.
- 19X. Tang, C. A. M. Senevirathne, T. Matsushima, A. S. D. Sandanayaka, C. Adachi, Adv. Mater. 2023, 2211873.
- 20A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, C. Adachi, Appl. Phys. Express 2019, 12, 061010.
- 21A. S. D. Sandanayaka, K. Yoshida, M. Inoue, C. Qin, K. Goushi, J.-C. Ribierre, T. Matsushima, C. Adachi, Adv. Opt. Mater. 2016, 4, 834–839.
- 22V. T. N. Mai, A. Shukla, A. M. C. Senevirathne, I. Allison, H. Lim, R. J. Lepage, S. K. M. McGregor, M. Wood, T. Matsushima, E. G. Moore, E. H. Krenske, A. S. D. Sandanayaka, C. Adachi, E. B. Namdas, S.-C. Lo, Adv. Opt. Mater. 2020, 8, 2001234.
- 23C. A. M. Senevirathne, S. Yoshida, M. Auffray, M. Yahiro, B. S. B. Karunathilaka, F. Bencheikh, K. Goushi, A. S. D. Sandanayaka, T. Matsushima, C. Adachi, Adv. Opt. Mater. 2022, 10, 2101302.
- 24M. Lehnhardt, T. Riedl, T. Weimann, W. Kowalsky, Phys. Rev. B 2010, 81, 165206.
- 25M. A. Baldo, R. J. Holmes, S. R. Forrest, Phys. Rev. B 2002, 66, 35321.
- 26M. Lehnhardt, T. Riedl, U. Scherf, T. Rabe, W. Kowalsky, Org. Electron. 2011, 12, 1346–1351.
- 27K. Yoshida, J. Gong, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, I. D. W. Samuel, Nature 2023, 621, 746–752.
- 28Y. Oyama, M. Mamada, A. Shukla, E. G. Moore, S.-C. Lo, E. B. Namdas, C. Adachi, ACS Mater. Lett. 2020, 2, 161–167.
- 29Q. Zhang, W. Tao, J. Huang, R. Xia, J. Cabanillas-Gonzalez, Adv. Photonics Res. 2021, 2, 2000155.
- 30T. Matsushima, S. Yoshida, K. Inada, Y. Esaki, T. Fukunaga, H. Mieno, N. Nakamura, F. Bencheikh, M. R. Leyden, R. Komatsu, C. Qin, A. S. D. Sandanayaka, C. Adachi, Adv. Funct. Mater. 2019, 29, 1807148.
- 31M. Fang, J. Huang, S.-J. Chang, Y. Jiang, W.-Y. Lai, W. Huang, J. Mater. Chem. C 2017, 5, 5797–5809.
- 32Y. Jiang, K. F. Li, K. Gao, H. Lin, H. L. Tam, Y.-Y. Liu, Y. Shu, K.-L. Wong, W.-Y. Lai, K. W. Cheah, W. Huang, Angew. Chem. Int. Ed. 2021, 60, 10007–10015.
- 33J.-M. Teng, Y.-F. Wang, C.-F. Chen, J. Mater. Chem. C 2020, 8, 11340–11353.
- 34T. Huang, W. Jiang, L. Duan, J. Mater. Chem. C 2018, 6, 5577–5596.
- 35Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 2017, 46, 915–1016.
- 36C.-C. Yan, X.-D. Wang, L.-S. Liao, Adv. Sci. 2022, 9, 2200525.
- 37A. Khan, X. Tang, C. Zhong, Q. Wang, S.-Y. Yang, F.-C. Kong, S. Yuan, A. S. D. Sandanayaka, C. Adachi, Z.-Q. Jiang, L.-S. Liao, Adv. Funct. Mater. 2021, 31, 2009488.
- 38H. Nakanotani, T. Furukawa, T. Hosokai, T. Hatakeyama, C. Adachi, Adv. Opt. Mater. 2017, 5, 1700051.
- 39T. Zhang, Z. Zhou, X. Liu, K. Wang, Y. Fan, C. Zhang, J. Yao, Y. Yan, Y. S. Zhao, J. Am. Chem. Soc. 2021, 143, 20249–20255.
- 40Y. Li, K. Wang, Q. Liao, L. Fu, C. Gu, Z. Yu, H. Fu, Nano Lett. 2021, 21, 3287–3294.
- 41S. Li, J. Chen, Y. Wei, J. De, H. Geng, Q. Liao, R. Chen, H. Fu, Angew. Chem. Int. Ed. 2022, 61, e202209211.
- 42D.-H. Kim, A. D'Aléo, X.-K. Chen, A. D. S. Sandanayaka, D. Yao, L. Zhao, T. Komino, E. Zaborova, G. Canard, Y. Tsuchiya, E. Choi, J. W. Wu, F. Fages, J.-L. Brédas, J.-C. Ribierre, C. Adachi, Nat. Photonics 2018, 12, 98–104.
- 43Z. Zhou, C. Qiao, K. Wang, L. Wang, J. Liang, Q. Peng, Z. Wei, H. Dong, C. Zhang, Z. Shuai, Y. Yan, Y. S. Zhao, Angew. Chem. Int. Ed. 2020, 59, 21677–21682.
- 44M. Mamada, S. Maedera, S. Oda, T. B. Nguyen, H. Nakanotani, T. Hatakeyama, C. Adachi, Mater. Chem. Front. 2023, 7, 259–266.
- 45T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777–2781.
- 46Y. Zhang, D. Zhang, J. Wei, Z. Liu, Y. Lu, L. Duan, Angew. Chem. Int. Ed. 2019, 58, 16912–16917.
- 47Y. Fu, H. Liu, B. Z. Tang, Z. Zhao, Nat. Commun. 2023, 14, 2019.
- 48In Molecular Fluorescence, Wiley-VCH, Weinheim, 2012, pp. 31–51.
- 49T. Aimono, Y. Kawamura, K. Goushi, H. Yamamoto, H. Sasabe, C. Adachi, Appl. Phys. Lett. 2005, 86, 071110.
- 50Y.-T. Lee, C.-Y. Chan, M. Tanaka, M. Mamada, U. Balijapalli, Y. Tsuchiya, H. Nakanotani, T. Hatakeyama, C. Adachi, Adv. Electron. Mater. 2021, 7, 2001090.
- 51C.-Y. Chan, M. Tanaka, Y.-T. Lee, Y.-W. Wong, H. Nakanotani, T. Hatakeyama, C. Adachi, Nat. Photonics 2021, 15, 203–207.
- 52X. Tang, U. Balijapalli, D. Okada, B. S. B. Karunathilaka, C. A. M. Senevirathne, Y.-T. Lee, Z. Feng, A. S. D. Sandanayaka, T. Matsushima, C. Adachi, Adv. Funct. Mater. 2021, 31, 2104529.
- 53K. Yoshida, P. P. Manousiadis, R. Bian, Z. Chen, C. Murawski, M. C. Gather, H. Haas, G. A. Turnbull, I. D. W. Samuel, Nat. Commun. 2020, 11, 1171.