Unusual Thermal Quenching of Photoluminescence from an Organic–Inorganic Hybrid [MnBr4]2−-based Halide Mediated by Crystalline–Crystalline Phase Transition
Meng-Meng Lun
Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorHao-Fei Ni
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorZhi-Xu Zhang
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 P. R. China
Search for more papers by this authorJun-Yi Li
Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P. R. China
Search for more papers by this authorQiang-Qiang Jia
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yi Zhang
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yujian Zhang
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Da-Wei Fu
Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P. R. China
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 P. R. China
Search for more papers by this authorMeng-Meng Lun
Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorHao-Fei Ni
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorZhi-Xu Zhang
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 P. R. China
Search for more papers by this authorJun-Yi Li
Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P. R. China
Search for more papers by this authorQiang-Qiang Jia
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yi Zhang
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yujian Zhang
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Da-Wei Fu
Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P. R. China
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004 P. R. China
Search for more papers by this authorGraphical Abstract
An unusual temporary photoluminescence (PL) quenching effect is herein reported for the first time, namely the thermodynamic phase transition of (DMML)2MnBr4 (DMML=N,N-dimethylmorpholinium) couples highly with PL response. Notably, the intriguing phenomenon will make an important contribution to the further in-depth exploration of responsive photoluminescence and optical encryption.
Abstract
The ability to generate and manipulate photoluminescence (PL) behavior has been of primary importance for applications in information security. Excavating novel optical effects to create more possibilities for information encoding has become a continuous challenge. Herein, we present an unprecedented PL temporary quenching that highly couples with thermodynamic phase transition in a hybrid crystal (DMML)2MnBr4 (DMML=N,N-dimethylmorpholinium). Such unusual PL behavior originates from the anomalous variation of [MnBr4]2− tetrahedrons that leads to non-radiation recombination near the phase transition temperature of 340 K. Remarkably, the suitable detectable temperature, narrow response window, high sensitivity, and good cyclability of this PL temporary quenching will endow encryption applications with high concealment, operational flexibility, durability, and commercial popularization. Profited from these attributes, a fire-new optical encryption model is devised to demonstrate high confidential information security. This unprecedented optical effect would provide new insights and paradigms for the development of luminescent materials to enlighten future information encryption.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202313590-sup-0001-(DMML)2MnBr4-284.5K.cif610.5 KB | Supporting Information |
anie202313590-sup-0001-(DMML)2MnBr4-340K.cif665.7 KB | Supporting Information |
anie202313590-sup-0001-(DMML)2MnBr4-351K.cif397.4 KB | Supporting Information |
anie202313590-sup-0001-(DMML)2MnBr4-430K.cif442.1 KB | Supporting Information |
anie202313590-sup-0001-(DMML)2MnCl4-293_K.cif574.1 KB | Supporting Information |
anie202313590-sup-0001-(DMML)2MnCl4-435_K.cif417 KB | Supporting Information |
anie202313590-sup-0001-misc_information.pdf2 MB | Supporting Information |
anie202313590-sup-0001-The_evolution_of_PL_with_temperature.mp427.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. O. Omoniyi, Y. Wang, S. Yang, J. Liu, J. Zhang, Z. Su, Mater. Today Commun. 2023, 36, 106508;
- 1bS. Lin, Y. Tang, W. Kang, H. K. Bisoyi, J. Guo, Q. Li, Nat. Commun. 2023, 14, 3005;
- 1cJ. Zhang, H. Shen, X. Liu, X. Yang, S. L. Broman, H. Wang, Q. Li, J. W. Y. Lam, H. Zhang, M. Cacciarini, M. B. Nielsen, B. Z. Tang, Angew. Chem. Int. Ed. 2022, 134, e202208460;
- 1dS. Liu, X. Fang, B. Lu, D. Yan, Nat. Commun. 2020, 11, 4649;
- 1eC. Xing, B. Zhou, D. Yan, W.-H. Fang, CCS Chem. 2023, https://doi.org/10.31635/ccschem.023.202202605.
- 2
- 2aT. Zhang, H. Kang, B. Li, J. Zhou, P. Zhao, T. Zhao, X. Li, S. Jiang, J. Mater. Chem. C 2023, 11, 5461–5468;
- 2bJ. Chen, S. Zhang, X. Pan, R. Li, S. Ye, A. K. Cheetham, L. Mao, Angew. Chem. Int. Ed. 2022, 61, e202205906;
- 2cJ.-X. Gao, W.-Y. Zhang, Z.-G. Wu, Y.-X. Zheng, D.-W. Fu, J. Am. Chem. Soc. 2020, 142, 4756–4761;
- 2dB. Zhou, Z. Qi, M. Dai, C. Xing, D. Yan, Angew. Chem. Int. Ed. 2023, 62, e202309913.
- 3
- 3aP. She, Y. Ma, Y. Qin, M. Xie, F. Li, S. Liu, W. Huang, Q. Zhao, Matter 2019, 1, 1644–1655;
- 3bC. Sun, H. Lu, C. Y. Yue, H. Fei, S. Wu, S. Wang, X. W. Lei, ACS Appl. Mater. Interfaces 2022, 14, 56176–56184;
- 3cW. Ye, H. Ma, H. Shi, H. Wang, A. Lv, L. Bian, M. Zhang, C. Ma, K. Ling, M. Gu, Y. Mao, X. Yao, C. Gao, K. Shen, W. Jia, J. Zhi, S. Cai, Z. Song, J. Li, Y. Zhang, S. Lu, K. Liu, C. Dong, Q. Wang, Y. Zhou, W. Yao, Y. Zhang, H. Zhang, Z. Zhang, X. Hang, Z. An, X. Liu, W. Huang, Nat. Mater. 2021, 20, 1539–1544.
- 4
- 4aY. L. Yang, X. C. Yang, J. Y. Yuan, T. Li, Y. T. Fan, L. Wang, Z. Deng, Q. L. Li, D. Y. Wan, J. T. Zhao, Z. J. Zhang, Adv. Opt. Mater. 2021, 9, 2100668;
- 4bJ. F. Liao, Z. Zhang, J. H. Wei, Z. Z. Zhang, B. Wang, L. Zhou, G. Xing, Z. Tang, D. B. Kuang, Adv. Opt. Mater. 2022, 10, 2102426;
- 4cX. Zhao, M. Wu, H. Liu, Y. Wang, K. Wang, X. Yang, B. Zou, Adv. Funct. Mater. 2022, 32, 2109277;
- 4dD. Y. Li, J. H. Song, Y. Cheng, X. M. Wu, Y. Y. Wang, C. J. Sun, C. Y. Yue, X. W. Lei, Angew. Chem. Int. Ed. 2022, 134, e202206437;
- 4eD. Guo, X. Le, H. Shang, F. Shan, D. Li, C. Ouyang, T. Chen, Chin. Chem. Lett. 2023, 34, 108347;
- 4fC. Wang, J. Huang, Y. He, G. Ran, Q. Song, Chin. Chem. Lett. 2023, 108420.
- 5
- 5aJ. H. Wei, W. T. Ou, J. B. Luo, D. B. Kuang, Angew. Chem. Int. Ed. 2022, 134, e202207985;
- 5bB. Zhou, D. Yan, Adv. Funct. Mater. 2023, 33, 2300735;
- 5cS. Feng, Y. Ma, S. Wang, S. Gao, Q. Huang, H. Zhen, D. Yan, Q. Ling, Z. Lin, Angew. Chem. Int. Ed. 2022, 61, e202116511.
- 6
- 6aY. Shen, Z. An, H. Liu, B. Yang, Y. Zhang, Angew. Chem. Int. Ed. 2023, 135, e202214483;
- 6bZ. Xie, X. Zhang, Y. Xiao, H. Wang, M. Shen, S. Zhang, H. Sun, R. Huang, T. Yu, W. Huang, Adv. Mater. 2023, 35, e2212273;
- 6cY. M. You, W. Q. Liao, D. Zhao, H. Y. Ye, Y. Zhang, Q. Zhou, X. Niu, J. Wang, P. F. Li, D. W. Fu, Z. Wang, S. Gao, K. Yang, J. M. Liu, J. Li, Y. Yan, R. G. Xiong, Science 2017, 357, 306–309;
- 6dZ. Z. Zhang, Y. P. Lin, J. C. Jin, L. K. Gong, Y. C. Peng, Y. Song, N. N. Shen, Z. P. Wang, K. Z. Du, X. Y. Huang, Angew. Chem. Int. Ed. 2021, 60, 23373–23379;
- 6eB. L. Wang, Y. Yu, H. Y. Zhang, Y. Z. Xuan, G. R. Chen, W. Y. Ma, J. Y. Li, J. H. Yu, Angew. Chem. Int. Ed. 2019, 58, 18443–18448.
- 7
- 7aS. Mckeever, E. G. Yukihara, Optically stimulated luminescence: fundamentals and applications, John Wiley & Sons, Hoboken 2011, pp. 13–98;
- 7bZ. Tang, R. Liu, J. Chen, D. Zheng, P. Zhou, S. Liu, T. Bai, K. Zheng, K. Han, B. Yang, Angew. Chem. Int. Ed. 2022, 61, e202210975;
- 7cS. Y. Liu, Y. H. Lin, D. P. Yan, Sci. Bull. 2022, 67, 2076–2084.
- 8Z. Wang, D. Xie, F. Zhang, J. Yu, X. Chen, C. P. Wong, Sci. Adv. 2020, 6, eabc2181.
- 9S. J. Yang, S. X. Zhou, H. Li, Y. Nie, H. Y. Xu, W. Liu, J. L. Miao, Y. X. Li, G. Gao, J. S. You, X. C. Jiang, ACS Appl. Mater. Interfaces 2022, 14, 16611–16620.
- 10Z. P. Wang, Z. Z. Zhang, L. Q. Tao, N. N. Shen, B. Hu, L. K. Gong, J. R. Li, X. P. Chen, X. Y. Huang, Angew. Chem. Int. Ed. 2019, 58, 9974–9978.
- 11M. Li, D. Yang, X. Huang, H. Zhang, Y. Zhao, B. Yin, Q. Pan, J. Kang, N. Zheng, X. Liu, J. Qiu, Z. Yang, G. Dong, Adv. Mater. 2022, 34, e2201413.
- 12A. Al-Azzawi, Light and optics: principles and practices, Vol. 4, CRC Press, Boca Raton, FL 2018, pp. 1–15.
10.1201/9780849383144 Google Scholar
- 13Y. Qin, P. She, X. Huang, W. Huang, Q. Zhao, Coord. Chem. Rev. 2020, 416, 213331.
- 14
- 14aS. Bhagavantam, H. M. Otte, Phys. Today 1967, 20, 75–77;
10.1063/1.3034370 Google Scholar
- 14bC. Kittel, R. W. Hellwarth, Phys. Today 1957, 10, 43–44.
10.1063/1.3060399 Google Scholar
- 15G. Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15–50.
- 16H. Q. Yao, L. H. Li, S. Y. Zhang, Y. Peng, S. J. Liu, H. R. Wen, J. Zhang, H. Y. Ye, Y. Song, Z. B. Hu, Chem. Eur. J. 2023, 29, e202300598.
- 17
- 17aH. Peng, T. Huang, B. Zou, Y. Tian, X. Wang, Y. Guo, T. Dong, Z. Yu, C. Ding, F. Yang, J. Wang, Nano Energy 2021, 87, 106166;
- 17bD. H. Liang, H. B. Xiao, W. S. Cai, S. R. Lu, S. Y. Zhao, Z. G. Zang, L. Xie, Adv. Opt. Mater. 2023, 11, 2202997.
- 18Deposition numbers numbers 2284195 (for (DMML)2MnBr4 at 285 K), 2284196 (for (DMML)2MnBr4 at 351 K), 2284197 (for (DMML)2MnCl4 at 293 K), 2284198 (for (DMML)2MnCl4 at 435 K), 2287690 (for (DMML)2MnBr4 at 340 K) and 2287691 (for (DMML)2MnBr4 at 430 K) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 19J. R. Gispert, Coordination chemistry, Wiley-VCH, Weinheim 2008, pp. 81–90.