Combinatorial Ligand Assisted Simultaneous Control of Axial and Central Chirality in Highly Stereoselective C−H Allylation
Trisha Bhattacharya
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai—, 400076 India
Search for more papers by this authorSupratim Ghosh
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai—, 400076 India
Search for more papers by this authorSubhabrata Dutta
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai—, 400076 India
Search for more papers by this authorDr. Srimanta Guin
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai—, 400076 India
Search for more papers by this authorAnimesh Ghosh
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai—, 400076 India
Search for more papers by this authorCorresponding Author
Prof. Haibo Ge
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409–1061 USA
Search for more papers by this authorCorresponding Author
Prof. Raghavan B Sunoj
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai—, 400076 India
Search for more papers by this authorCorresponding Author
Prof. Debabrata Maiti
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai—, 400076 India
Search for more papers by this authorTrisha Bhattacharya
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai—, 400076 India
Search for more papers by this authorSupratim Ghosh
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai—, 400076 India
Search for more papers by this authorSubhabrata Dutta
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai—, 400076 India
Search for more papers by this authorDr. Srimanta Guin
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai—, 400076 India
Search for more papers by this authorAnimesh Ghosh
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai—, 400076 India
Search for more papers by this authorCorresponding Author
Prof. Haibo Ge
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409–1061 USA
Search for more papers by this authorCorresponding Author
Prof. Raghavan B Sunoj
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai—, 400076 India
Search for more papers by this authorCorresponding Author
Prof. Debabrata Maiti
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai—, 400076 India
Search for more papers by this authorGraphical Abstract
The aim of converging multiple stereocenters in asymmetric catalysis brings exciting avenues for expanding the ‘chiral pool’. With this aim, a dual-cooperative ligand system was developed for controlling two distinct stereo-environment in an atropselective C−H allylation of biaryls. The system leverages a chiral amino acid as a transient-ligand source and chiral phosphoric acid for the early C−H activation step. The DFT studies present a rich mechanistic model, authenticating the extensive experimental findings.
Abstract
The significance of stereoselective C−H bond functionalization thrives on its direct application potential to pharmaceuticals or complex chiral molecule synthesis. Complication arises when there are multiple stereogenic elements such as a center and an axis of chirality to control. Over the years cooperative assistance of multiple chiral ligands has been applied to control only chiral centers. In this work, we harness the essence of cooperative ligand approach to control two different stereogenic elements in the same molecule by atroposelective allylation to synthesize axially chiral biaryls from its racemic precursor. The crucial roles played by chiral phosphoric acid and chiral amino acid ligand in concert helped us to obtain one major stereoisomer out of four distinct possibilities.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202310112-sup-0001-misc_information.pdf9.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. Ackermann, Org. Process Res. Dev. 2015, 19, 260–269;
- 1bD. Basu, S. Kumar, S. S. V, R. Bandichhor, J. Chem. Sci. 2018, 130, 1–11;
- 1cT. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem. Soc. Rev. 2016, 45, 546–576;
- 1dH. M. Davies, D. Morton, ACS Cent. Sci. 2017, 3, 936–943;
- 1eL. Guillemard, N. Kaplaneris, L. Ackermann, M. J. Johansson, Nat. Chem. Rev. 2021, 5, 522–545;
- 1fR. Jana, H. M. Begam, E. Dinda, Chem. Commun. 2021, 57, 10842–10866;
- 1gJ. D. Lasso, D. J. Castillo-Pazos, C.-J. Li, Chem. Soc. Rev. 2021, 50, 10955–10982;
- 1hM. Seki, Org. Process Res. Dev. 2016, 20, 867–877;
- 1iS. K. Sinha, S. Guin, S. Maiti, J. P. Biswas, S. Porey, D. Maiti, Chem. Rev. 2022, 122, 5682–5841;
- 1jJ. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369–375;
- 1kJ. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2012, 51, 8960–9009.
- 2
- 2aR. Noyori, Angew. Chem. Int. Ed. 2002, 41, 2008–2022;
10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4 CAS PubMed Web of Science® Google Scholar
- 2bC. Zheng, S.-L. You, RSC Adv. 2014, 4, 6173–6214;
- 2cK. Liao, S. Negretti, D. G. Musaev, J. Bacsa, H. M. Davies, Nature 2016, 533, 230–234; X. Yu, Z.-Z. Zhang, J.-L. Niu, B.-F. Shi, Org. Chem. Front. 2022, 9, 1458–1484.
- 3
- 3aT. G. Saint-Denis, R.-Y. Zhu, G. Chen, Q.-F. Wu, J.-Q. Yu, Science 2018, 359, eaao4798;
- 3bQ. Zhang, B.-F. Shi, Acc. Chem. Res. 2021, 54, 2750–2763;
- 3cS. Cheng, Q. Li, X. Cheng, Y. M. Lin, L. Gong, Chin. J. Chem. 2022, 40, 2825–2837;
- 3dB.-B. Zhan, L. Jin, B.-F. Shi, Trends Chem 2022, 4, 220–235, DOI: 10.1016/j.trechm.2021.12.005.
- 4
- 4aT. K. Achar, S. Maiti, S. Jana, D. Maiti, ACS Catal. 2020, 10, 13748–13793;
- 4bX. Bao, J. Rodriguez, D. Bonne, Angew. Chem. Int. Ed. 2020, 59, 12623–12634.
- 5
- 5aP. Wipf, E. M. Skoda, A. Mann, in The practice of medicinal chemistry, Elsevier, Amsterdam, 2015, pp. 279–299;
10.1016/B978-0-12-417205-0.00011-0 Google Scholar
- 5bQ. Yue, B. Liu, G. Liao, B.-F. Shi, ACS Catal. 2022, 12, 9359–9396.
- 6
- 6aJ. Wencel-Delord, A. Panossian, F. Leroux, F. Colobert, Chem. Soc. Rev. 2015, 44, 3418–3430;
- 6bG. Liao, T. Zhou, Q.-J. Yao, B.-F. Shi, Chem. Commun. 2019, 55, 8514–8523;
- 6cG. Liao, T. Zhang, Z.-K. Lin, B.-F. Shi, Angew. Chem. Int. Ed. 2020, 59, 19773–19786;
- 6dB.-F. Shi, F. Colobert, Chem Catal. 2021, 1, 485–487;
- 6eC.-X. Liu, W.-W. Zhang, S.-Y. Yin, Q. Gu, S.-L. You, J. Am. Chem. Soc. 2021, 143, 14025–14040;
- 6fJ. K. Cheng, S.-H. Xiang, S. Li, L. Ye, B. Tan, Chem. Rev. 2021, 121, 4805–4902;
- 6gD. Chandra, U. Sharma, Org. Biomol. Chem. 2021, 19, 4014–4026;
- 6hJ. A. Carmona, C. Rodríguez-Franco, R. Fernández, V. Hornillos, J. M. Lassaletta, Chem. Soc. Rev. 2021, 50, 2968–2983.
- 7
- 7aT. Wesch, A. Berthelot-Brehier, F. R. Leroux, F. Colobert, Org. Lett. 2013, 15, 2490–2493;
- 7bT. Wesch, F. R. Leroux, F. Colobert, Adv. Synth. Catal. 2013, 355, 2139–2144;
- 7cC. K. Hazra, Q. Dherbassy, J. Wencel-Delord, F. Colobert, Angew. Chem. 2014, 126, 14091–14095;
10.1002/ange.201407865 Google Scholar
- 7dQ. Dherbassy, G. Schwertz, C. K. Hazra, T. Wesch, J. Wencel-Delord, F. Colobert, Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 1339–1351;
- 7eQ. Dherbassy, G. Schwertz, M. Chesse, C. K. Hazra, J. Wencel-Delord, F. Colobert, Chem. Eur. J. 2016, 22, 1735–1743;
- 7fP. Schmitz, M. Malter, G. Lorscheider, C. Schreiner, A. Carboni, S. Choppin, F. Colobert, A. Speicher, Tetrahedron 2016, 72, 5230–5237.
- 8
- 8aQ. J. Yao, S. Zhang, B. B. Zhan, B. F. Shi, Angew. Chem. 2017, 129, 6717–6721;
- 8bG. Liao, B. Li, H. M. Chen, Q. J. Yao, Y. N. Xia, J. Luo, B. F. Shi, Angew. Chem. Int. Ed. 2018, 57, 17151–17155;
- 8cG. Liao, Q. J. Yao, Z. Z. Zhang, Y. J. Wu, D. Y. Huang, B. F. Shi, Angew. Chem. 2018, 130, 3723–3727;
- 8dH.-M. Chen, S. Zhang, G. Liao, Q.-J. Yao, X.-T. Xu, K. Zhang, B.-F. Shi, Organometallics 2019, 38, 4022–4028;
- 8eG. Liao, H. M. Chen, Y. N. Xia, B. Li, Q. J. Yao, B. F. Shi, Angew. Chem. 2019, 131, 11586–11590;
- 8fS. Zhang, Q.-J. Yao, G. Liao, X. Li, H. Li, H.-M. Chen, X. Hong, B.-F. Shi, ACS Catal. 2019, 9, 1956–1961.
- 9
- 9aJ. I. Higham, J. A. Bull, Org. Biomol. Chem. 2020, 18, 7291–7315;
- 9bN. Goswami, T. Bhattacharya, D. Maiti, Nat. Chem. Rev. 2021, 5, 646–659.
- 10
- 10aS. Maity, P. Dolui, R. Kancherla, D. Maiti, Chem. Sci. 2017, 8, 5181–5185;
- 10bT. K. Achar, X. Zhang, R. Mondal, M. Shanavas, S. Maiti, S. Maity, N. Pal, R. S. Paton, D. Maiti, Angew. Chem. 2019, 131, 10461–10468;
10.1002/ange.201904608 Google Scholar
- 10cA. Baccalini, S. Vergura, P. Dolui, S. Maiti, S. Dutta, S. Maity, F. F. Khan, G. K. Lahiri, G. Zanoni, D. Maiti, Org. Lett. 2019, 21, 8842–8846;
- 10dS. Dutta, T. Bhattacharya, D. B. Werz, D. Maiti, Chem 2021, 7, 555–605.
- 11
- 11aK. Muñiz, C. Bolm, Chem. Eur. J. 2000, 6, 2309–2316;
10.1002/1521-3765(20000703)6:13<2309::AID-CHEM2309>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 11bA. Pfaltz, W. J. Drury III, Proc. Natl. Acad. Sci. USA 2004, 101, 5723–5726;
- 11cS. P. Flanagan, P. J. Guiry, J. Organomet. Chem. 2006, 691, 2125–2154.
- 12
- 12aK. Mikami, S. Matsukawa, T. Volk, M. Terada, Angew. Chem. Int. Ed. 1997, 36, 2768–2771;
- 12bM. T. Reetz, Angew. Chem. Int. Ed. 2001, 40, 284–310;
10.1002/1521-3773(20010119)40:2<284::AID-ANIE284>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 12cD. Peña, A. J. Minnaard, J. A. Boogers, A. H. de Vries, J. G. de Vries, B. L. Feringa, Org. Biomol. Chem. 2003, 1, 1087–1089.
- 13A. Romero-Arenas, V. Hornillos, J. Iglesias-Sigüenza, R. Fernández, J. López-Serrano, A. Ros, J. M. Lassaletta, J. Am. Chem. Soc. 2020, 142, 2628–2639.
- 14
- 14aH. Park, P. Verma, K. Hong, J.-Q. Yu, Nat. Chem. 2018, 10, 755–762;
- 14bH. Song, Y. Li, Q. J. Yao, L. Jin, L. Liu, Y. H. Liu, B. F. Shi, Angew. Chem. 2020, 132, 6638–6642.
- 15
- 15aE. R. Jarvo, S. J. Miller, Tetrahedron 2002, 58, 2481–2495;
- 15bE. A. C. Davie, S. M. Mennen, Y. Xu, S. J. Miller, Chem. Rev. 2007, 107, 5759–5812.
- 16
- 16aD. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2014, 114, 9047–9153;
- 16bP. S. Wang, H. C. Lin, Y. J. Zhai, Z. Y. Han, L. Z. Gong, Angew. Chem. Int. Ed. 2014, 53, 12218–12221;
- 16cS.-B. Yan, S. Zhang, W.-L. Duan, Org. Lett. 2015, 17, 2458–2461;
- 16dH. Wang, H. R. Tong, G. He, G. Chen, Angew. Chem. Int. Ed. 2016, 55, 15387–15391;
- 16eJ. P. Reid, J. M. Goodman, Chem. Eur. J. 2017, 23, 14248–14260;
- 16fL. Yang, R. Melot, M. Neuburger, O. Baudoin, Chem. Sci. 2017, 8, 1344–1349;
- 16gR. Maji, S. C. Mallojjala, S. E. Wheeler, Chem. Soc. Rev. 2018, 47, 1142–1158;
- 16hP.-S. Wang, L.-Z. Gong, Synthesis 2022, 54, 4795–4801.
- 17Deposition number 2130315 (3 j) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 18
- 18aThe Gibbs free energies of important stationary points are provided in Table S9 in the Supporting Information. There have been a number of reports on the use of the B3LYP-D3 function for studying transition metal catalyzed reactions;
- 18bComputational details are provided in the computational methods section in the Supporting Information;
- 18cP. A. Provencher, J. F. Hoskin, J. J. Wong, X. Chen, J.-Q. Yu, K. Houk, E. J. Sorensen, J. Am. Chem. Soc. 2021, 143, 20035–20041;
- 18dB. Bhaskararao, M. E. Rotella, D. Y. Kim, J.-M. Kee, K. S. Kim, M. C. Kozlowski, J. Am. Chem. Soc. 2022, 144, 16171–16183;
- 18eS. Chatterjee, I. Harden, G. Bistoni, R. G. Castillo, S. Chabbra, M. van Gastel, A. Schnegg, E. Bill, J. A. Birrell, B. Morandi, J. Am. Chem. Soc. 2022, 144, 2637–2656;
- 18fP.-P. Chen, P. Wipf, K. Houk, Nat. Commun. 2022, 13, 7292;
- 18gZ. Ren, D. G. Musaev, H. M. Davies, ACS Catal. 2022, 12, 13446–13456;
- 18hS. Ghosh, A. Changotra, D. A. Petrone, M. Isomura, E. M. Carreira, R. B. Sunoj, J. Am. Chem. Soc. 2023, 145, 2884–2900.
- 19S. Ghosh, S. Shilpa, C. Athira, R. B. Sunoj, Top. Catal. 2022, 65, 141–164.
- 20G. Jindal, R. B. Sunoj, J. Am. Chem. Soc. 2014, 136, 15998–16008.
- 21
- 21aDetails of different possibilities considered for the formation of a potential active catalyst from the pre-catalyst is provided in Figure S1 in the Supporting Information; b, It is found that the inclusion of (Sa)-CPA as a counterion results in significant stabilization of the active catalyst. .
- 22See Figure S5 in the Supporting Information for the C−H activation pathway involving different ligands, bases and additives in the CMD mechanism.
- 23The Gibbs free energy profile for (Sa)-CPA assisted and unassisted migratory insertion step is provided in Figure S6 and Table S6 in the Supporting Information.
- 24See Figure S8 in the Supporting Information for the Gibbs free energy profile devoid of (Sa)-CPA. It can be noticed that the si-I mode of migratory insertion through [6 c′–7 c′]≠ is 0.5 kcal/mol lower than the re-I mode. Such a difference in TS energies corresponds to a diastereoselectivity of 39 %, consistent with the observed low diastereoselectivity under experimental conditions.
- 25
- 25aA similar energetic trend was observed by using a different fluoro-group containing biaryl substrate. The computed Gibbs free energy profile is shown in Figure S8 in the Supporting Information;
- 25bThe overall energetic features of the catalytic cycle can be understood using the relative Gibbs free energies of important transition states and intermediates provided in Table S7.
- 26
- 26aThe details of single point energy calculations using the M06, ωB97X-D, and B03LYP-D03-BJ functionals are provided in Table S10 in the Supporting Information. The mechanistic trends such as the identity of the turn-over determining step, stereoselectivity predictions, and the overall conclusions obtained using different functionals were found to be very similar;
- 26bThe optimized geometries of important transition states are shown in Figure S11 in the Supporting Information.
- 27
- 27aS. Kozuch, S. Shaik, Acc. Chem. Res. 2011, 44, 101–110;
- 27bS. Kozuch, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 795–815.
- 28To obtain maximum δE, different likely combinations of the stationary points involved in the catalytic cycle are considered. The energetic span calculations are shown in Table S7 in the Supporting Information.
- 29The computed kinetic isotope effect (KIE) for the C−H activation step is found to be 1.00, which is in good agreement with the experimental observations. See Table S11 in the Supporting Information for more details.
- 30E. M. Simmons, J. F. Hartwig, Angew. Chem. Int. Ed. 2012, 51, 3066–3072.
- 31The rotational barrier for (Sa) to (Ra) interconversion for the low yielding substrates 1 c, 1 j, and 1 p are 22.0, 19.1, and 18.2 kcal/mol respectively, which is energetically favored under reaction conditions. Therefore, the reaction is most likely proceeding via a dynamic kinetic resolution (DKR) pathway.
- 32The Gibbs free energy profile diagram for the migratory insertion step for activated and unactivated olefins is provided in Figure S10 in the Supporting Information.
- 33
- 33aF. M. Bickelhaupt, J. Comput. Chem. 1999, 20, 114–128;
- 33bF. M. Bickelhaupt, K. N. Houk, Angew. Chem. Int. Ed. 2017, 56, 10070–10086.
- 34
- 34aThe transition state is partitioned into three components, i.e, olefin, (Sa)-CPA and the remaining catalyst-substrate counterpart shown in Figure S8 in the Supporting Information. ;
- 34bDetails regarding the activation strain analysis are provided in Table S8 in the Supporting Information.