Size- and Emission-Controlled Synthesis of Full-Color Luminescent Metal-Organic Frameworks for Tryptophan Detection
Dr. Hai-Lun Xia
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055 People's Republic of China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jian Zhang
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055 People's Republic of China
These authors contributed equally to this work.
Search for more papers by this authorJincheng Si
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055 People's Republic of China
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 People's Republic of China
Search for more papers by this authorHexiang Wang
State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024 People's Republic of China
Search for more papers by this authorDr. Kang Zhou
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055 People's Republic of China
Search for more papers by this authorDr. Lei Wang
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055 People's Republic of China
Search for more papers by this authorProf. Jingbai Li
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055 People's Republic of China
Search for more papers by this authorProf. Wen Sun
State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Lulu Qu
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Jing Li
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055 People's Republic of China
Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854 USA
Search for more papers by this authorCorresponding Author
Prof. Xiao-Yuan Liu
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055 People's Republic of China
Search for more papers by this authorDr. Hai-Lun Xia
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055 People's Republic of China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jian Zhang
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055 People's Republic of China
These authors contributed equally to this work.
Search for more papers by this authorJincheng Si
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055 People's Republic of China
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 People's Republic of China
Search for more papers by this authorHexiang Wang
State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024 People's Republic of China
Search for more papers by this authorDr. Kang Zhou
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055 People's Republic of China
Search for more papers by this authorDr. Lei Wang
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055 People's Republic of China
Search for more papers by this authorProf. Jingbai Li
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055 People's Republic of China
Search for more papers by this authorProf. Wen Sun
State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Lulu Qu
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Jing Li
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055 People's Republic of China
Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854 USA
Search for more papers by this authorCorresponding Author
Prof. Xiao-Yuan Liu
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055 People's Republic of China
Search for more papers by this authorGraphical Abstract
Nano-luminescent metal–organic frameworks (LMOFs), with precise size control and emission colors from blue to near-infrared, were prepared using 2,1,3-benzothiadiazole and its derivative based ditopic- and tetratopic carboxylic acids as the emission sources. The nano-LMOFs exhibit turn-off and turn-on responses for highly selective and sensitive detection of tryptophan over nineteen other natural amino acids.
Abstract
The development of nanoscaled luminescent metal–organic frameworks (nano-LMOFs) with organic linker-based emission to explore their applications in sensing, bioimaging and photocatalysis is of great interest as material size and emission wavelength both have remarkable influence on their performances. However, there is lack of platforms that can systematically tune the emission and size of nano-LMOFs with customized linker design. Herein two series of fcu- and csq-type nano-LMOFs, with precise size control in a broad range and emission colors from blue to near-infrared, were prepared using 2,1,3-benzothiadiazole and its derivative based ditopic- and tetratopic carboxylic acids as the emission sources. The modification of tetratopic carboxylic acids using OH and NH2 as the substituent groups not only induces significant emission bathochromic shift of the resultant MOFs, but also endows interesting features for their potential applications. As one example, we show that the non-substituted and NH2-substituted nano-LMOFs exhibit turn-off and turn-on responses for highly selective and sensitive detection of tryptophan over other nineteen natural amino acids. This work sheds light on the rational construction of nano-LMOFs with specific emission behaviours and sizes, which will undoubtedly facilitate their applications in related areas.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202308506-sup-0001-HIAM-4022.cif9.7 MB | Supporting Information |
anie202308506-sup-0001-misc_information.pdf4.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. Houk, Chem. Soc. Rev. 2009, 38, 1330–1352.
- 2Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2012, 112, 1126–1162.
- 3Z. Hu, B. J. Deibert, J. Li, Chem. Soc. Rev. 2014, 43, 5815–5840.
- 4H. Wang, W. P. Lustig, J. Li, Chem. Soc. Rev. 2018, 47, 4729–4756.
- 5X.-Y. Liu, W. P. Lustig, J. Li, ACS Energy Lett. 2020, 5, 2671–2680.
- 6Y. Zhao, H. Zeng, X.-W. Zhu, W. Lu, D. Li, Chem. Soc. Rev. 2021, 50, 4484–4513.
- 7V. Martínez-Martínez, S. Furukawa, Y. Takashima, I. López Arbeloa, S. Kitagawa, J. Phys. Chem. C 2012, 116, 26084–26090.
- 8R. Haldar, R. Matsuda, S. Kitagawa, S. J. George, T. K. Maji, Angew. Chem. Int. Ed. 2014, 53, 11772–11777.
- 9J. Rocha, L. D. Carlos, F. A. A. Paz, D. Ananias, Chem. Soc. Rev. 2011, 40, 926–940.
- 10N. Yanai, K. Kitayama, Y. Hijikata, H. Sato, R. Matsuda, Y. Kubota, M. Takata, M. Mizuno, T. Uemura, S. Kitagawa, Nat. Mater. 2011, 10, 787–793.
- 11M. B. Majewski, H. Noh, T. Islamoglu, O. K. Farha, J. Mater. Chem. A 2018, 6, 7338–7350.
- 12S. Wang, C. M. McGuirk, A. d′Aquino, J. A. Mason, C. A. Mirkin, Adv. Mater. 2018, 30, 1800202.
- 13C. R. Marshall, S. A. Staudhammer, C. K. Brozek, Chem. Sci. 2019, 10, 9396–9408.
- 14K. Ni, G. Lan, W. Lin, ACS Cent. Sci. 2020, 6, 861–868.
- 15X. Xiao, L. Zou, H. Pang, Q. Xu, Chem. Soc. Rev. 2020, 49, 301–331.
- 16X. Cai, Z. Xie, D. Li, M. Kassymova, S.-Q. Zang, H.-L. Jiang, Coord. Chem. Rev. 2020, 417, 213366.
- 17J. Li, S. Yuan, J.-S. Qin, J. Pang, P. Zhang, Y. Zhang, Y. Huang, H. F. Drake, W. R. Liu, H.-C. Zhou, Angew. Chem. Int. Ed. 2020, 59, 9319–9323.
- 18P. Li, S. Y. Moon, M. A. Guelta, L. Lin, D. A. Gomez-Gualdron, R. Q. Snurr, S. P. Harvey, J. T. Hupp, O. K. Farha, ACS Nano 2016, 10, 9174–9182.
- 19M. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo, L. Gu, W. Hu, H. Zhao, Z. Tang, Nature 2016, 539, 76–80.
- 20J.-D. Xiao, Q. Shang, Y. Xiong, Q. Zhang, Y. Luo, S.-H. Yu, H.-L. Jiang, Angew. Chem. Int. Ed. 2016, 55, 9389–9393.
- 21G. Lan, Y. Y. Zhu, S. S. Veroneau, Z. Xu, D. Micheroni, W. Lin, J. Am. Chem. Soc. 2018, 140, 5326–5329.
- 22D. Li, S. H. Yu, H. L. Jiang, Adv. Mater. 2018, 30, 1707377.
- 23J. D. Xiao, H. L. Jiang, Acc. Chem. Res. 2019, 52, 356–366.
- 24J. Park, Q. Jiang, D. Feng, L. Mao, H. C. Zhou, J. Am. Chem. Soc. 2016, 138, 3518–3525.
- 25J. Park, M. Xu, F. Li, H. C. Zhou, J. Am. Chem. Soc. 2018, 140, 5493–5499.
- 26B. Li, X. Lu, Y. Tian, D. Li, Angew. Chem. Int. Ed. 2022, 61, e202206755.
- 27Y. Pan, D. Heryadi, F. Zhou, L. Zhao, G. Lestari, H. Su, Z. Lai, CrystEngComm 2011, 13, 6937–6940.
- 28C. Avci, I. Imaz, A. Carne-Sanchez, J. A. Pariente, N. Tasios, J. Perez-Carvajal, M. I. Alonso, A. Blanco, M. Dijkstra, C. Lopez, D. Maspoch, Nat. Chem. 2018, 10, 78–84.
- 29X. Y. Liu, W. S. Lo, C. Wu, B. P. Williams, L. Luo, Y. Li, L. Y. Chou, Y. Lee, C. K. Tsung, Nano Lett. 2020, 20, 1774–1780.
- 30S. Wang, C. M. McGuirk, M. B. Ross, S. Wang, P. Chen, H. Xing, Y. Liu, C. A. Mirkin, J. Am. Chem. Soc. 2017, 139, 9827–9830.
- 31X. Chen, Y. Zhuang, N. Rampal, R. Hewitt, G. Divitini, C. A. O'Keefe, X. Liu, D. J. Whitaker, J. W. Wills, R. Jugdaohsingh, J. J. Powell, H. Yu, C. P. Grey, O. A. Scherman, D. Fairen-Jimenez, J. Am. Chem. Soc. 2021, 143, 13557–13572.
- 32S. Wang, W. Morris, Y. Liu, C. M. McGuirk, Y. Zhou, J. T. Hupp, O. K. Farha, C. A. Mirkin, Angew. Chem. Int. Ed. 2015, 54, 14738–14742.
- 33X. G. Wang, Q. Cheng, Y. Yu, X. Z. Zhang, Angew. Chem. Int. Ed. 2018, 57, 7836–7840.
- 34P. Li, R. C. Klet, S. Y. Moon, T. C. Wang, P. Deria, A. W. Peters, B. M. Klahr, H. J. Park, S. S. Al-Juaid, J. T. Hupp, O. K. Farha, Chem. Commun. 2015, 51, 10925–10928.
- 35Y.-M. Wang, X.-T. Tian, H. Zhang, Z.-R. Yang, X.-B. Yin, ACS Appl. Mater. Interfaces 2018, 10, 22445–22452.
- 36F. Chen, Y.-M. Wang, W. Guo, X.-B. Yin, Chem. Sci. 2019, 10, 1644–1650.
- 37H.-Q. Yin, X.-Y. Wang, X.-B. Yin, J. Am. Chem. Soc. 2019, 141, 15166–15173.
- 38S. Wu, D. Ren, K. Zhou, H. L. Xia, X. Y. Liu, X. Wang, J. Li, J. Am. Chem. Soc. 2021, 143, 10547–10552.
- 39D. Ren, H.-L. Xia, K. Zhou, S. Wu, X.-Y. Liu, X. Wang, J. Li, Angew. Chem. Int. Ed. 2021, 60, 25048–25054.
- 40H.-L. Xia, K. Zhou, S. Wu, D. Ren, K. Xing, J. Guo, X. Wang, X.-Y. Liu, J. Li, Chem. Sci. 2022, 13, 8036–8044.
- 41H.-L. Xia, K. Zhou, J. Guo, J. Zhang, X. Huang, D. Luo, X.-Y. Liu, J. Li, Chem. Sci. 2022, 13, 9321–9328.
- 42N. Wei, Y.-R. Zhang, Z.-B. Han, CrystEngComm 2013, 15, 8883–8886.
- 43Z. Ju, W. Yan, X. Gao, Z. Shi, T. Wang, H. Zheng, Cryst. Growth Des. 2016, 16, 2496–2503.
- 44R. J. Marshall, Y. Kalinovskyy, S. L. Griffin, C. Wilson, B. A. Blight, R. S. Forgan, J. Am. Chem. Soc. 2017, 139, 6253–6260.
- 45A. Mallick, A. M. El-Zohry, O. Shekhah, J. Yin, J. Jia, H. Aggarwal, A. H. Emwas, O. F. Mohammed, M. Eddaoudi, J. Am. Chem. Soc. 2019, 141, 7245–7249.
- 46D. Zhao, D. Yue, K. Jiang, Y. Cui, Q. Zhang, Y. Yang, G. Qian, J. Mater. Chem. C 2017, 5, 1607–1613.
- 47E. Angioni, R. J. Marshall, N. J. Findlay, J. Bruckbauer, B. Breig, D. J. Wallis, R. W. Martin, R. S. Forgan, P. J. Skabara, J. Mater. Chem. C 2019, 7, 2394–2400.
- 48G. Han, S. Wu, K. Zhou, H.-L. Xia, X.-Y. Liu, J. Li, Inorg. Chem. 2022, 61, 3363–3367.
- 49S. Goswami, C. E. Miller, J. L. Logsdon, C. T. Buru, Y. L. Wu, D. N. Bowman, T. Islamoglu, A. M. Asiri, C. J. Cramer, M. R. Wasielewski, J. T. Hupp, O. K. Farha, ACS Appl. Mater. Interfaces 2017, 9, 19535–19540.
- 50J.-K. Jin, K. Wu, X.-Y. Liu, G.-Q. Huang, Y.-L. Huang, D. Luo, M. Xie, Y. Zhao, W. Lu, X.-P. Zhou, J. He, D. Li, J. Am. Chem. Soc. 2021, 143, 21340–21349.
- 51H.-L. Xia, K. Zhou, L. Yu, H. Wang, X.-Y. Liu, D. M. Proserpio, J. Li, Inorg. Chem. 2022, 61, 7980–7988.
- 52S. Wang, Y. Chen, S. Wang, P. Li, C. A. Mirkin, O. K. Farha, J. Am. Chem. Soc. 2019, 141, 2215–2219.
- 53Deposition number 2252825 (HIAM-4022) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 54J. E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E. J. DeMarco, M. H. Weston, A. A. Sarjeant, S. T. Nguyen, P. C. Stair, R. Q. Snurr, O. K. Farha, J. T. Hupp, J. Am. Chem. Soc. 2013, 135, 10294–10297.
- 55D. Feng, Z.-Y. Gu, J.-R. Li, H.-L. Jiang, Z. Wei, H.-C. Zhou, Angew. Chem. Int. Ed. 2012, 51, 10307–10310.
- 56J. Pang, Z. Di, J. S. Qin, S. Yuan, C. T. Lollar, J. Li, P. Zhang, M. Wu, D. Yuan, M. Hong, H. C. Zhou, J. Am. Chem. Soc. 2020, 142, 15020–15026.
- 57C. Han, H. Li, Small 2008, 4, 1344–1350.
- 58J. Wang, H.-B. Liu, Z. Tong, C.-S. Ha, Coord. Chem. Rev. 2015, 303, 139–184.
- 59D. Jonckheere, J. A. Steele, B. Claes, B. Bueken, L. Claes, B. Lagrain, M. B. J. Roeffaers, D. E. De Vos, ACS Appl. Mater. Interfaces 2017, 9, 30064–30073.
- 60Y. Zhu, Y. Zhou, X. Zhang, Z. Sun, C. Jiao, Adv. Opt. Mater. 2021, 9, 2001889.
- 61H. Cai, Y.-X. Wu, Z. Lu, D. Luo, J.-X. Sun, G.-W. Wu, M. Li, Y.-B. Wei, L.-M. Zhong, D. Li, J. Am. Chem. Soc. 2022, 144, 9559–9563.