Hybrid Double Perovskite Derived Halides Based on Bi and Alkali Metals (K, Rb): Diverse Structures, Tunable Optical Properties and Second Harmonic Generation Responses
Jiaqian Zhou
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorPeiran Xie
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorChao Wang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorTieyuan Bian
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077 China SAR
Search for more papers by this authorDr. Jian Chen
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorDr. Yang Liu
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorZhu Guo
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorCongcong Chen
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorXin Pan
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorProf. Dr. Min Luo
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jun Yin
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077 China SAR
Search for more papers by this authorCorresponding Author
Prof. Dr. Lingling Mao
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorJiaqian Zhou
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorPeiran Xie
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorChao Wang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorTieyuan Bian
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077 China SAR
Search for more papers by this authorDr. Jian Chen
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorDr. Yang Liu
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorZhu Guo
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorCongcong Chen
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorXin Pan
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorProf. Dr. Min Luo
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jun Yin
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077 China SAR
Search for more papers by this authorCorresponding Author
Prof. Dr. Lingling Mao
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorGraphical Abstract
15 double perovskite derived halides A2BBiX6 are reported here, composed of organic cationic ligand A, forming diverse novel structures varying in dimensionalities. Various combinations of A, B and X create new structural types and tunable optical properties, where two-thirds of these phases are non-centrosymmetric and second-harmonic generation active.
Abstract
Double perovskites (DP) have attracted extensive attention due to their rich structures and wide application prospects in the field of optoelectronics. Here, we report 15 new Bi-based double perovskite derived halides with the general formula of A2BBiX6 (A=organic cationic ligand, B=K or Rb, X=Br or I). These materials are synthesized using organic ligands to coordinate with metal ions with a sp3 oxygen, and diverse structure types have been obtained with distinct dimensionalities and connectivity modes. The optical band gaps of these phases can be tuned by changing the halide, the organic ligand and the alkali metal, varying from 2.0 to 2.9 eV. The bromide phases exhibit increasing photoluminescence (PL) intensity with decreasing temperature, while the PL intensity of iodide phases changes nonmonotonically with temperature. Because the majority of these phases are non-centrosymmetric, second harmonic generation (SHG) responses are also measured for selected non-centrosymmetric materials, showing different particle-size-dependent trends. Our findings give rise to a series of new structural types to the DP family, and provide a powerful synthetic handle for symmetry breaking.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aN. G. Park, K. Zhu, Nat. Rev. Mater. 2020, 5, 333–350;
- 1bR. Wang, T. Y. Huang, J. J. Xue, J. H. Tong, K. Zhu, Y. Yang, Nat. Photonics 2021, 15, 411–425;
- 1cY. L. Zhang, N. G. Park, ACS Energy Lett. 2022, 7, 757–765.
- 2
- 2aH. Tsai, C. M. Liu, E. Kinigstein, M. X. Li, S. Tretiak, M. Cotlet, X. D. Ma, X. Y. Zhang, W. Y. Nie, Adv. Sci. 2020, 7, 1903202;
- 2bX. K. Liu, W. D. Xu, S. Bai, Y. Z. Jin, J. P. Wang, R. H. Friend, F. Gao, Nat. Mater. 2021, 20, 10–21;
- 2cR. Khan, S. L. Chu, Z. J. Li, K. O. Ighodalo, W. J. Chen, Z. G. Xiao, Adv. Funct. Mater. 2022, 32, 2203650.
- 3
- 3aC. J. Qin, A. S. D. Sandanayaka, C. Y. Zhao, T. Matsushima, D. Z. Zhang, T. Fujihara, C. Adachi, Nature 2020, 585, 53–57;
- 3bQ. Zhang, Q. Y. Shang, R. Su, T. T. H. Do, Q. H. Xiong, Nano Lett. 2021, 21, 1903–1914;
- 3cH. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X. Y. Zhu, Nat. Mater. 2015, 14, 636-U115.
- 4
- 4aY. Q. Zhang, Y. Ma, Y. X. Wang, X. D. Zhang, C. T. Zuo, L. Shen, L. M. Ding, Adv. Mater. 2021, 33, 2006691;
- 4bZ. Q. Li, X. Y. Liu, C. L. Zuo, W. Yang, X. S. Fang, Adv. Mater. 2021, 33, 2103010.
- 5K. Dave, M. H. Fang, Z. Bao, H. T. Fu, R. S. Liu, Chem. Asian J. 2020, 15, 242–252.
- 6
- 6aL. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692–3696;
- 6bL. Mao, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 1171–1190.
- 7H. A. Evans, L. Mao, R. Seshadri, A. K. Cheetham, Annu. Rev. Mater. Res. 2021, 51, 351–380.
- 8G. Volonakis, M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger, H. J. Snaith, F. Giustino, J. Phys. Chem. Lett. 2016, 7, 1254–1259.
- 9
- 9aA. H. Slavney, T. Hu, A. M. Lindenberg, H. I. Karunadasa, J. Am. Chem. Soc. 2016, 138, 2138–2141;
- 9bE. T. McClure, M. R. Ball, W. Windl, P. M. Woodward, Chem. Mater. 2016, 28, 1348–1354.
- 10C. C. Wu, Q. H. Zhang, Y. Liu, W. Luo, X. Guo, Z. R. Huang, H. Ting, W. H. Sun, X. R. Zhong, S. Y. Wei, S. F. Wang, Z. J. Chen, L. X. Xiao, Adv. Sci. 2018, 5, 1700759.
- 11
- 11aW. H. Ning, F. Wang, B. Wu, J. Lu, Z. B. Yan, X. J. Liu, Y. T. Tao, J. M. Liu, W. Huang, M. Fahlman, L. Hultman, T. C. Sum, F. Gao, Adv. Mater. 2018, 30, 1706246;
- 11bE. Greul, M. L. Petrus, A. Binek, P. Docampo, T. Bein, J. Mater. Chem. A 2017, 5, 19972–19981;
- 11cW. Y. Gao, C. X. Ran, J. Xi, B. Jiao, W. W. Zhang, M. C. Wu, X. Hou, Z. X. Wu, ChemPhysChem 2018, 19, 1696–1700.
- 12F. Wei, Z. Deng, S. Sun, F. Xie, G. Kieslich, D. M. Evans, M. A. Carpenter, P. D. Bristowe, A. K. Cheetham, Mater. Horiz. 2016, 3, 328–332.
- 13L. Mao, S. M. L. Teicher, C. C. Stoumpos, R. M. Kennard, R. A. DeCrescent, G. Wu, J. A. Schuller, M. L. Chabinyc, A. K. Cheetham, R. Seshadri, J. Am. Chem. Soc. 2019, 141, 19099–19109.
- 14Z. H. Weng, J. J. Qin, A. A. Umar, J. Wang, X. Zhang, H. L. Wang, X. L. Cui, X. G. Li, L. R. Zheng, Y. Q. Zhan, Adv. Funct. Mater. 2019, 29, 1902234.
- 15Y. Y. Dang, G. Q. Tong, W. T. Song, Z. H. Liu, L. B. Qiu, L. K. Ono, Y. B. Qi, J. Mater. Chem. C 2020, 8, 276–284.
- 16
- 16aH. R. Li, X. Shan, J. N. Neu, T. Geske, M. Davis, P. S. Mao, K. Xiao, T. Siegrist, Z. B. Yu, J. Mater. Chem. C 2018, 6, 11961–11967;
- 16bW. N. Yuan, G. D. Niu, Y. M. Xian, H. D. Wu, H. M. Wang, H. Yin, P. Liu, W. Z. Li, J. D. Fan, Adv. Funct. Mater. 2019, 29, 1900234.
- 17
- 17aZ. Z. Zhang, Y. Q. Liang, H. L. Huang, X. Y. Liu, Q. Li, L. X. Chen, D. S. Xu, Angew. Chem. Int. Ed. 2019, 58, 7263–7267;
- 17bH. L. Wu, X. B. Li, C. H. Tung, L. Z. Wu, Adv. Mater. 2019, 31, 1900709.
- 18L. He, K. Xu, P.-P. Shi, Z.-B. Liu, W. Zhang, Q. Ye, Sci. China Mater. 2022, 65, 2879–2883.
- 19T. Bai, X. Wang, Z. Wang, S. Ji, X. Meng, Q. Wang, R. Zhang, P. Han, K. L. Han, J. Chen, F. Liu, B. Yang, Angew. Chem. Int. Ed. 2023, 62, e202213240.
- 20C. Lichtenberg, Organometallics 2016, 35, 894–902.
- 21S. S. Batsanov, Russ. Chem. Bull. 1995, 44, 2245–2250.
- 22
- 22aC. C. Stoumpos, L. Mao, C. D. Malliakas, M. G. Kanatzidis, Inorg. Chem. 2017, 56, 56–73;
- 22bL. L. Mao, P. J. Guo, M. Kepenekian, I. Hadar, C. Katan, J. Even, R. D. Schaller, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc. 2018, 140, 13078–13088.
- 23G. Kortüm, W. Braun, G. Herzog, Angew. Chem. Int. Ed. 1963, 2, 333–341.
10.1002/anie.196303331 Google Scholar
- 24
- 24aT. Zhang, C. Zhou, X. Feng, N. Dong, H. Chen, X. Chen, L. Zhang, J. Lin, J. Wang, Nat. Commun. 2022, 13, 60;
- 24bD. Ghosh, A. J. Neukirch, S. Tretiak, J. Phys. Chem. Lett. 2020, 11, 2955–2964.
- 25K. K. Bass, L. Estergreen, C. N. Savory, J. Buckeridge, D. O. Scanlon, P. I. Djurovich, S. E. Bradforth, M. E. Thompson, B. C. Melot, Inorg. Chem. 2017, 56, 42–45.
- 26A. J. Lehner, D. H. Fabini, H. A. Evans, C.-A. Hébert, S. R. Smock, J. Hu, H. Wang, J. W. Zwanziger, M. L. Chabinyc, R. Seshadri, Chem. Mater. 2015, 27, 7137–7148.
- 27L. Lian, G. Zhai, F. Cheng, Y. Xia, M. Zheng, J. Ke, M. Gao, H. Liu, D. Zhang, L. Li, J. Gao, J. Tang, J. Zhang, CrystEngComm 2018, 20, 7473–7478.
- 28M. Liu, Q. Wan, H. Wang, F. Carulli, X. Sun, W. Zheng, L. Kong, Q. Zhang, C. Zhang, Q. Zhang, S. Brovelli, L. Li, Nat. Photonics 2021, 15, 379–385.
- 29K. M. McCall, C. C. Stoumpos, S. S. Kostina, M. G. Kanatzidis, B. W. Wessels, Chem. Mater. 2017, 29, 4129–4145.
- 30
- 30aH. Lei, D. Hardy, F. Gao, Adv. Funct. Mater. 2021, 31, 2105898;
- 30bM. Shi, G. Li, W. Tian, S. Jin, X. Tao, Y. Jiang, E. A. Pidko, R. Li, C. Li, Adv. Mater. 2020, 32, 2002137;
- 30cX. Zhang, Y. Lv, Y. Lv, Y. Liu, Z. Yang, J. Mater. Res. Technol. 2022, 17, 425–432.
- 31C. Chen, X. Zhao, Y. Gong, Y. Liu, Z. Chen, L. Zhang, J. Chen, Z. Deng, H. Lu, M. Luo, P. Canepa, L. Mao, Chem. Mater. 2023, 35, 3265–3275.
- 32X. Li, Y. Guan, X. Li, Y. Fu, J. Am. Chem. Soc. 2022, 144, 18030–18042.
- 33Deposition numbers 2265227, 2265228, 2265229, 2265230, 2265231, 2265232, 2265233, 2265234, 2265235, 2265236, 2265237, 2265238, 2265239, 2265240 and 2265241 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.