Integrated Soft Porosity and Electrical Properties of Conductive-on-Insulating Metal-Organic Framework Nanocrystals
Prof. Ming-Shui Yao
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian District, Beijing, 100190 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Ken-ichi Otake
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorJiajia Zheng
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorMasahiko Tsujimoto
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorDr. Yi-Fan Gu
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, Shanghai, 200092 China
Search for more papers by this authorLu Zheng
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, Shanghai, 200092 China
Search for more papers by this authorDr. Ping Wang
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorDr. Shivanna Mohana
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorDr. Mickaele Bonneau
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorTomoyuki Koganezawa
Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 Japan
Search for more papers by this authorTetsuo Honma
Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 Japan
Search for more papers by this authorHirotaka Ashitani
Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
Search for more papers by this authorShogo Kawaguchi
Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 Japan
Search for more papers by this authorProf. Yoshiki Kubota
Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
Department of Physics, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
Search for more papers by this authorCorresponding Author
Prof. Susumu Kitagawa
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorProf. Ming-Shui Yao
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian District, Beijing, 100190 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Ken-ichi Otake
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorJiajia Zheng
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorMasahiko Tsujimoto
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorDr. Yi-Fan Gu
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, Shanghai, 200092 China
Search for more papers by this authorLu Zheng
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, Shanghai, 200092 China
Search for more papers by this authorDr. Ping Wang
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorDr. Shivanna Mohana
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorDr. Mickaele Bonneau
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorTomoyuki Koganezawa
Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 Japan
Search for more papers by this authorTetsuo Honma
Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 Japan
Search for more papers by this authorHirotaka Ashitani
Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
Search for more papers by this authorShogo Kawaguchi
Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 Japan
Search for more papers by this authorProf. Yoshiki Kubota
Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
Department of Physics, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
Search for more papers by this authorCorresponding Author
Prof. Susumu Kitagawa
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorGraphical Abstract
Owing to the integration of soft porosity and electrical properties, conductive-on-insulating metal–organic framework (cMOF-on-iMOF) heterostructured nanocrystals (with the semiconductive soft porous interfaces) show enhanced selective sorption toward CO2, electrical gating, and “shape memory” effects for the guest responsive iMOF core, as revealed by operando synchrotron measurements.
Abstract
A one-stone, two-bird method to integrate the soft porosity and electrical properties of distinct metal–organic frameworks (MOFs) into a single material involves the design of conductive-on-insulating MOF (cMOF-on-iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF-on-iMOF heterostructures using a seeded layer-by-layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF-on-iMOF heterostructures exhibit enhanced selective sorption of CO2 compared to the pristine iMOF (298 K, 1 bar, S
from 15.4 of ZIF-7 to 43.2–152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF-on-iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical “shape memory” toward acetone and CO2. This behavior was observed through the guest-induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide-angle X-ray scattering measurements.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202303903-sup-0001-misc_information.pdf5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science 2005, 309, 2040–2042;
- 1bA. P. Katsoulidis, D. Antypov, G. F. Whitehead, E. J. Carrington, D. J. Adams, N. G. Berry, G. R. Darling, M. S. Dyer, M. J. Rosseinsky, Nature 2019, 565, 213–217;
- 1cM. Kondo, T. Yoshitomi, H. Matsuzaka, S. Kitagawa, K. Seki, Angew. Chem. Int. Ed. Engl. 1997, 36, 1725–1727;
- 1dK.-J. Chen, D. G. Madden, S. Mukherjee, T. Pham, K. A. Forrest, A. Kumar, B. Space, J. Kong, Q.-Y. Zhang, M. J. Zaworotko, Science 2019, 366, 241–246;
- 1eS. Krause, V. Bon, I. Senkovska, U. Stoeck, D. Wallacher, D. M. Többens, S. Zander, R. S. Pillai, G. Maurin, F.-X. Coudert, S. Kaskel, Nature 2016, 532, 348–352;
- 1fJ. E. Mondloch, M. J. Katz, W. C. Isley Iii, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, C. J. Cramer, J. T. Hupp, O. K. Farha, Nat. Mater. 2015, 14, 512–516;
- 1gP.-Q. Liao, N.-Y. Huang, W.-X. Zhang, J.-P. Zhang, X.-M. Chen, Science 2017, 356, 1193–1196;
- 1hM. D. Allendorf, R. Dong, X. Feng, S. Kaskel, D. Matoga, V. Stavila, Chem. Rev. 2020, 120, 8581–8640.
- 2S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695–704.
- 3
- 3aA. Ghoufi, K. Benhamed, L. Boukli-Hacene, G. Maurin, ACS Cent. Sci. 2017, 3, 394–398;
- 3bA. L. Kolesnikov, Y. A. Budkov, J. Möllmer, M. G. Kiselev, R. Gläser, J. Phys. Chem. C 2019, 123, 10333–10338;
- 3cJ. P. Dürholt, B. F. Jahromi, R. Schmid, ACS Cent. Sci. 2019, 5, 1440–1448;
- 3dK. Chen, R. Singh, J. Guo, Y. Guo, A. Zavabeti, Q. Gu, R. Q. Snurr, P. A. Webley, G. K. Li, ACS Appl. Mater. Interfaces 2022, 14, 13904–13913.
- 4
- 4aS. B. Peh, A. Karmakar, D. Zhao, Trends Chem. 2020, 2, 199–213;
- 4bC. Gu, N. Hosono, J.-J. Zheng, Y. Sato, S. Kusaka, S. Sakaki, S. Kitagawa, Science 2019, 363, 387–391;
- 4cL. Li, R.-B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou, B. Chen, Science 2018, 362, 443–446;
- 4dZ. Meng, R. M. Stolz, L. Mendecki, K. A. Mirica, Chem. Rev. 2019, 119, 478–598;
- 4eL. S. Xie, G. Skorupskii, M. Dinca, Chem. Rev. 2020, 120, 8536–8580.
- 5A. Knebel, B. Geppert, K. Volgmann, D. Kolokolov, A. Stepanov, J. Twiefel, P. Heitjans, D. Volkmer, J. Caro, Science 2017, 358, 347–351.
- 6
- 6aS. Krause, N. Hosono, S. Kitagawa, Angew. Chem. Int. Ed. 2020, 59, 15325–15341;
- 6bK. Ikigaki, K. Okada, Y. Tokudome, T. Toyao, P. Falcaro, C. J. Doonan, M. Takahashi, Angew. Chem. Int. Ed. 2019, 58, 6886–6890;
- 6cM. S. Yao, J. W. Xiu, Q. Q. Huang, W. H. Li, W. W. Wu, A. Q. Wu, L. A. Cao, W. H. Deng, G. E. Wang, G. Xu, Angew. Chem. Int. Ed. 2019, 58, 14915–14919;
- 6dC. Liu, Q. Sun, L. Lin, J. Wang, C. Zhang, C. Xia, T. Bao, J. Wan, R. Huang, J. Zou, Nat. Commun. 2020, 11, 4971;
- 6eX. G. Wang, L. Xu, M. J. Li, X. Z. Zhang, Angew. Chem. Int. Ed. 2020, 59, 18078–18086;
- 6fS. Bi, H. Banda, M. Chen, L. Niu, M. Chen, T. Wu, J. Wang, R. Wang, J. Feng, T. Chen, Nat. Mater. 2020, 19, 552–558.
- 7G. Lee, S. Lee, S. Oh, D. Kim, M. Oh, J. Am. Chem. Soc. 2020, 142, 3042–3049.
- 8
- 8aZ. Wang, S. Wannapaiboon, K. Rodewald, M. Tu, B. Rieger, R. A. Fischer, J. Mater. Chem. A 2018, 6, 21295–21303;
- 8bF. Wang, H. Wang, T. Li, Nanoscale 2019, 11, 2121–2125.
- 9
- 9aS. Furukawa, K. Hirai, Y. Takashima, K. Nakagawa, M. Kondo, T. Tsuruoka, O. Sakata, S. Kitagawa, Chem. Commun. 2009, 5097–5099;
- 9bL. Feng, K.-Y. Wang, J. Powell, H.-C. Zhou, Matter 2019, 1, 801–824.
- 10O. Shekhah, H. Wang, D. Zacher, R. A. Fischer, C. Wöll, Angew. Chem. Int. Ed. 2009, 48, 5038–5041.
- 11M. Tu, C. Wiktor, C. Rösler, R. A. Fischer, Chem. Commun. 2014, 50, 13258–13260.
- 12M. G. Campbell, S. F. Liu, T. M. Swager, M. Dinca, J. Am. Chem. Soc. 2015, 137, 13780–13783.
- 13Y. Sakata, S. Furukawa, M. Kondo, K. Hirai, N. Horike, Y. Takashima, H. Uehara, N. Louvain, M. Meilikhov, T. Tsuruoka, Science 2013, 339, 193–196.
- 14N. Hosono, A. Terashima, S. Kusaka, R. Matsuda, S. Kitagawa, Nat. Chem. 2019, 11, 109–116.
- 15M. Kondo, S. Furukawa, K. Hirai, S. Kitagawa, Angew. Chem. Int. Ed. 2010, 49, 5327–5330.
- 16
- 16aP. Zhao, H. Fang, S. Mukhopadhyay, A. Li, S. Rudić, I. J. McPherson, C. C. Tang, D. Fairen-Jimenez, S. E. Tsang, S. A. Redfern, Nat. Commun. 2019, 10, 999;
- 16bY. Du, B. Wooler, M. Nines, P. Kortunov, C. S. Paur, J. Zengel, S. C. Weston, P. I. Ravikovitch, J. Am. Chem. Soc. 2015, 137, 13603–13611.
- 17
- 17aM.-S. Yao, W.-H. Li, G. Xu, Coord. Chem. Rev. 2021, 426, 213479;
- 17bW.-T. Koo, J.-S. Jang, I.-D. Kim, Chem 2019, 5, 1938–1963.
- 18
- 18aM. S. Yao, J. J. Zheng, A. Q. Wu, G. Xu, S. S. Nagarkar, G. Zhang, M. Tsujimoto, S. Sakaki, S. Horike, K. Otake, S. Kitagawa, Angew. Chem. Int. Ed. 2020, 59, 172–176;
- 18bY. Y. Jian, D. Y. Qu, L. H. Guo, Y. J. Zhu, C. Su, H. R. Feng, G. J. Zhang, J. Zhang, W. W. Wu, M. S. Yao, Front. Chem. Sci. Eng. 2021, 15, 505–517.
- 19M. A. Bañares, I. E. Wachs, J. Raman Spectrosc. 2002, 33, 359–380.