Self-assembly Induced Enhanced Electrochemiluminescence of Copper Nanoclusters Using DNA Nanoribbon Templates
Corresponding Author
Dr. Xiangyuan Ouyang
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
These authors contributed equally to this work.
Search for more papers by this authorYongli Wu
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
These authors contributed equally to this work.
Search for more papers by this authorLinjie Guo
The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
Institute of Materials Biology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444 China
These authors contributed equally to this work.
Search for more papers by this authorLe Li
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
These authors contributed equally to this work.
Search for more papers by this authorMo Zhou
The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
Zhangjiang Laboratory, Shanghai, 201210 China
Search for more papers by this authorXinyi Li
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
Search for more papers by this authorTing Liu
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
Search for more papers by this authorYawen Ding
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
Search for more papers by this authorProf. Huaiyu Bu
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
Search for more papers by this authorProf. Gang Xie
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
Search for more papers by this authorJianlei Shen
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorProf. Chunhai Fan
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Prof. Lihua Wang
The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
Institute of Materials Biology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444 China
Zhangjiang Laboratory, Shanghai, 201210 China
Search for more papers by this authorCorresponding Author
Dr. Xiangyuan Ouyang
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
These authors contributed equally to this work.
Search for more papers by this authorYongli Wu
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
These authors contributed equally to this work.
Search for more papers by this authorLinjie Guo
The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
Institute of Materials Biology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444 China
These authors contributed equally to this work.
Search for more papers by this authorLe Li
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
These authors contributed equally to this work.
Search for more papers by this authorMo Zhou
The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
Zhangjiang Laboratory, Shanghai, 201210 China
Search for more papers by this authorXinyi Li
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
Search for more papers by this authorTing Liu
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
Search for more papers by this authorYawen Ding
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
Search for more papers by this authorProf. Huaiyu Bu
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
Search for more papers by this authorProf. Gang Xie
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127 China
Search for more papers by this authorJianlei Shen
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorProf. Chunhai Fan
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Prof. Lihua Wang
The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
Institute of Materials Biology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444 China
Zhangjiang Laboratory, Shanghai, 201210 China
Search for more papers by this authorGraphical Abstract
The concept of self-assembly induced enhanced electrochemiluminescence (SIEECL) using programmable DNA nanoribbon was proposed for the first time. This novel concept is confirmed in various ECL emitters, such as copper nanoclusters, gold nanoclusters and Ru(bpy)32+/TPrA system. Accelerated electron transfer reaction and reduced energy gap contribute to the enhancement of ECL.
Abstract
Copper nanoclusters (CuNCs) are attractive electrochemiluminescence (ECL) emitters as Cu is comparatively inexpensive, nontoxic, and highly abundant. However, their ECL yield is relatively low. Herein, we report that orderly self-assembly of CuNCs using DNA nanoribbon as the template (DNR/CuNCs) conferred the CuNCs with improved ECL properties compared with individual CuNCs in both annihilation and co-reactant processes. The DNR/CuNCs resulted in a high ECL yield of 46.8 % in K2S2O8, which was ≈68 times higher than that of individual CuNCs. This strategy was successfully extended to other ECL emitters, such as gold nanoclusters and the Ru(bpy)32+/TPrA system. Furthermore, as an application of DNR/CuNCs, a DNR/CuNC-based ECL biosensor with higher sensitivity was constructed for dopamine determination (two orders of magnitude lower than that previously reported), showing that DNR/CuNCs have a potential for application in ECL bioanalysis as a new type of superior luminophore candidate.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202300893-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Zanut, A. Fiorani, S. Canola, T. Saito, N. Ziebart, S. Rapino, S. Rebeccani, A. Barbon, T. Irie, H. P. Josel, F. Negri, M. Marcaccio, M. Windfuhr, K. Imai, G. Valenti, F. Paolucci, Nat. Commun. 2020, 11, 2668;
- 1bW. Miao, Chem. Rev. 2008, 108, 2506–2553;
- 1cR. Luo, H. Lv, Q. Liao, N. Wang, J. Yang, Y. Li, K. Xi, X. Wu, H. Ju, J. Lei, Nat. Commun. 2021, 12, 6808;
- 1dY. Li, W. Cui, Q. Jiang, Q. Wu, R. Liang, Q. Luo, J. Qiu, Nat. Commun. 2021, 12, 4735;
- 1eZ. Ding, B. M. Quinn, S. K. Haram, L. E. Pell, B. A. Korgel, A. J. Bard, Science 2002, 296, 1293–1297;
- 1fM. M. Richter, Chem. Rev. 2004, 104, 3003–3036.
- 2
- 2aW. Guo, H. Ding, C. Gu, Y. Liu, X. Jiang, B. Su, Y. Shao, J. Am. Chem. Soc. 2018, 140, 15904–15915;
- 2bJ. Tan, L. Xu, T. Li, B. Su, J. Wu, Angew. Chem. Int. Ed. 2014, 53, 9822–9826;
- 2cR. R. Maar, R. Zhang, D. G. Stephens, Z. Ding, J. B. Gilroy, Angew. Chem. Int. Ed. 2019, 58, 1052–1056;
- 2dS. Liu, H. Yuan, H. Bai, P. Zhang, F. Lv, L. Liu, Z. Dai, J. Bao, S. Wang, J. Am. Chem. Soc. 2018, 140, 2284–2291;
- 2eZ. Liu, W. Qi, G. Xu, Chem. Soc. Rev. 2015, 44, 3117–3142;
- 2fM. Hesari, Z. Ding, Acc. Chem. Res. 2017, 50, 218–230.
- 3
- 3aM. Hesari, K. N. Swanick, J. S. Lu, R. Whyte, S. Wang, Z. Ding, J. Am. Chem. Soc. 2015, 137, 11266–11269;
- 3bX. Tan, B. Zhang, G. Zou, J. Am. Chem. Soc. 2017, 139, 8772–8776;
- 3cJ. Zhang, R. Jin, D. Jiang, H. Chen, J. Am. Chem. Soc. 2019, 141, 10294–10299.
- 4
- 4aX. Zhou, D. Zhu, Y. Liao, W. Liu, H. Liu, Z. Ma, D. Xing, Nat. Protoc. 2014, 9, 1146–1159;
- 4bX. Gao, G. Jiang, C. Gao, A. Prudnikau, R. Hübner, J. Zhan, G. Zou, Angew. Chem. Int. Ed. 2023, 62, e202214487;
- 4cS. Yu, Y. Du, X. Niu, G. Li, D. Zhu, Q. Yu, G. Zou, H. Ju, Nat. Commun. 2022, 13, 7302.
- 5Y. Pan, Z. Han, S. Chen, K. Wei, X. Wei, Coord. Chem. Rev. 2023, 478, 214964.
- 6
- 6aS. Chen, H. Ma, J. W. Padelford, W. Qinchen, W. Yu, S. Wang, M. Zhu, G. Wang, J. Am. Chem. Soc. 2019, 141, 9603–9609;
- 6bK. N. Swanick, M. Hesari, M. S. Workentin, Z. Ding, J. Am. Chem. Soc. 2012, 134, 15205–15208.
- 7W. Lai, W. Wong, A. L. Rogach, Adv. Mater. 2020, 32, 1906872.
- 8
- 8aM. Zhao, A. Chen, D. Huang, Y. Zhuo, Y. Chai, R. Yuan, Anal. Chem. 2016, 88, 11527–11532;
- 8bY. Zhou, H. Wang, H. Zhang, Y. Chai, R. Yuan, Anal. Chem. 2018, 90, 3543–3549;
- 8cA. Han, Y. Yang, Q. Zhang, Q. Tu, G. Fang, J. Liu, S. Wang, R. Li, J. Electroanal. Chem. 2017, 795, 116–122.
- 9P. Liu, R. Qin, G. Fu, N. Zheng, J. Am. Chem. Soc. 2017, 139, 2122–2131.
- 10D. Wang, X. Gao, J. Jia, B. Zhang, G. Zou, ACS Nano 2023, 17, 355–362.
- 11H. Peng, Z. Huang, Y. Sheng, X. Zhang, H. Deng, W. Chen, J. Liu, Angew. Chem. Int. Ed. 2019, 58, 11691–11694.
- 12L. Yang, B. Zhang, L. Fu, K. Fu, G. Zou, Angew. Chem. Int. Ed. 2019, 58, 6901–6905.
- 13Z. Lei, J. Li, X. Wan, W. Zhang, Q. Wang, Angew. Chem. Int. Ed. 2018, 57, 8639–8643.
- 14T. Wang, D. Wang, J. W. Padelford, J. Jiang, G. Wang, J. Am. Chem. Soc. 2016, 138, 6380–6383.
- 15X. Wei, M. Zhu, H. Yan, C. Lu, J. Xu, Chem. Eur. J. 2019, 25, 12671–12683.
- 16S. Carrara, A. Aliprandi, C. F. Hogan, L. De Cola, J. Am. Chem. Soc. 2017, 139, 14605–14610.
- 17
- 17aT. Gao, J. Zhang, R. Yan, D. Cao, D. Jiang, D. Ye, Inorg. Chem. 2018, 57, 4310–4316;
- 17bS. Carrara, B. Stringer, A. Shokouhi, P. Ramkissoon, J. Agugiaro, D. J. D. Wilson, P. J. Barnard, C. F. Hogan, ACS Appl. Mater. Interfaces 2018, 10, 37251–37257.
- 18
- 18aF. Sun, Z. Wang, Y. Feng, Y. Cheng, H. Ju, Y. Quan, Biosens. Bioelectron. 2018, 57, 4310–4316;
- 18bZ. Wang, Y. Feng, N. Wang, Y. Cheng, Y. Quan, H. Ju, J. Phys. Chem. Lett. 2018, 9, 5296–5302.
- 19
- 19aX. Wei, M. Zhu, Z. Cheng, M. Lee, H. Yan, C. Lu, J. Xu, Angew. Chem. Int. Ed. 2019, 58, 3162–3166;
- 19bZ. Han, Z. Yang, H. Sun, Y. Xu, X. Ma, D. Shan, J. Chen, S. Huo, Z. Zhang, P. Du, X. Lu, Angew. Chem. Int. Ed. 2019, 58, 5915–5919.
- 20H. Peng, Z. Huang, H. Deng, W. Wu, K. Huang, Z. Li, W. Chen, J. Liu, Angew. Chem. Int. Ed. 2020, 59, 9982–9985.
- 21
- 21aD. Le, D. Keller, G. Delaittre, Macromol. Rapid Commun. 2019, 40, 1800551;
- 21bA. Abdilla, N. D. Dolinski, P. Roos, J. Ren, E. Woude, S. E. Seo, M. S. Zayas, J. Lawrence, J. R. Alaniz, C. J. Hawker, J. Am. Chem. Soc. 2020, 142, 1667–1672;
- 21cJ. Zhang, P. J. Santos, P. A. Gabrys, S. Lee, C. Liu, R. J. Macfarlane, J. Am. Chem. Soc. 2016, 138, 16228–16231;
- 21dX. Ye, C. Zhu, P. Ercius, S. N. Raja, B. He, M. R. Jones, M. R. Hauwiller, Y. Liu, T. Xu, A. P. Alivisatos, Nat. Commun. 2015, 6, 10052;
- 21eP. J. Santos, Z. Cao, J. Zhang, A. Alexander-Katz, R. J. Macfarlane, J. Am. Chem. Soc. 2019, 141, 14624–14632;
- 21fP. J. Santos, T. C. Cheung, R. J. Macfarlane, Nano Lett. 2019, 19, 5774–5780;
- 21gN. J. Warren, S. P. Armes, J. Am. Chem. Soc. 2014, 136, 10174–10185;
- 21hJ. Yeow, C. Boyer, Adv. Sci. 2017, 4, 1700137.
- 22
- 22aN. C. Seeman, H. F. Sleiman, Nat. Rev. Mater. 2018, 3, 17068;
- 22bM. Madsen, K. V. Gothelf, Chem. Rev. 2019, 119, 6384–6458.
- 23
- 23aA. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. Roller, A. Högele, F. C. Simmel, A. O. Govorov, T. Lied, Nature 2012, 483, 311–314;
- 23bR. Schreiber, J. Do, E. Roller, T. Zhang, V. J. Schüller, P. C. Nickels, J. Feldmann, T. Liedl, Nat. Nanotechnol. 2014, 9, 74–78;
- 23cG. P. Acuna, F. M. Möller, P. Holzmeister, S. Beater, B. Lalkens, P. Tinnefeld, Science 2012, 338, 506–510;
- 23dX. Chen, Y. Wang, X. Dai, L. Din, J. Chen, G. Yao, X. Liu, S. Luo, J. Shi, L. Wang, R. Nechushtai, E. Pikarsky, I. Willner, C. Fan, J. Li, J. Am. Chem. Soc. 2022, 144, 6311–6320.
- 24
- 24aS. Rinker, Y. Ke, Y. Liu, R. Chhabra, H. Yan, Nat. Nanotechnol. 2008, 3, 418–422;
- 24bY. Ke, T. Meyer, W. M. Shih, G. Bellot, Nat. Commun. 2016, 7, 10935;
- 24cA. Kuzyk, K. T. Laitinen, P. Törmä, Nanotechnology 2009, 20, 235305;
- 24dZ. Zhao, J. Fu, S. Dhakal, A. Johnson-Buck, M. Liu, T. Zhang, N. W. Woodbury, Y. Liu, N. G. Walter, H. Yan, Nat. Commun. 2016, 7, 10619.
- 25
- 25aJ. B. Woehrstein, M. T. Strauss, L. L. Ong, B. Wei, D. Y. Zhang, R. Jungmann, P. Yin, Sci. Adv. 2017, 3, e1602128;
- 25bF. Nicoli, A. Barth, W. Bae, F. Neukirchinger, A. H. Crevenna, D. C. Lamb, T. Liedl, ACS Nano 2017, 11, 11264–11272;
- 25cC. Steinhauer, R. Jungmann, T. L. Sobey, F. C. Simmel, P. Tinnefeld, Angew. Chem. Int. Ed. 2009, 48, 8870–8873;
- 25dQ. Huang, B. Chen, J. Shen, L. Liu, J. Li, J. Shi, Q. Li, X. Zuo, L. Wang, C. Fan, J. Li, J. Am. Chem. Soc. 2021, 143, 10735–10742.
- 26
- 26aY. Tokura, S. Harvey, X. Xu, C. Chen, S. Morsbach, K. Wunderlich, G. Fytas, Y. Wu, D. Y. W. Ng, T. Weil, Chem. Commun. 2018, 54, 2808–2811;
- 26bJ. B. Knudsen, L. Liu, A. L. B. Kodal, M. Madsen, Q. Li, J. Song, J. B. Woehrstein, S. F. J. Wickham, M. T. Strauss, F. Schueder, J. Vinther, A. Krissanaprasit, D. Gudnason, A. A. A. Smith, R. Ogaki, A. N. Zelikin, F. Besenbacher, V. Birkedal, P. Yin, W. M. Shih, R. Jungmann, M. Dong, K. V. Gothelf, Nat. Nanotechnol. 2015, 10, 892–898.
- 27X. Ouyang, M. Wang, L. Guo, C. Cui, T. Liu, Y. Ren, Y. Zhao, Z. Ge, X. Guo, G. Xie, J. Li, C. Fan, L. Wan, Angew. Chem. Int. Ed. 2020, 59, 11836–11844.
- 28
- 28aI. Sissoëff, J. Grisvard, E. Guillé, Prog. Biophys. Mol. Biol. 1978, 31, 165–199;
10.1016/0079-6107(78)90008-1 Google Scholar
- 28bV. Andrushchenko, J. Sande, H. Wieser, Biopolymers 2003, 72, 374–390;
- 28cC. Zimmer, G. Luck, H. Fritzsche, H. Triebel, Biopolymers 1971, 10, 441–463.
- 29
- 29aV. Andrushchenko, P. Bouř, J. Phys. Chem. B 2009, 113, 283–291;
- 29bP. Cheng, D. Bohme, J. Phys. Chem. B 2007, 111, 11075–11082;
- 29cM. J. Kim, B. Kim, H. Kim, Chem. Phys. Lett. 2011, 505, 57–64;
- 29dG. Brancolini, R. Felice, J. Phys. Chem. B 2008, 112, 14281–14290;
- 29eM. Pavelka, M. Shukla, J. Leszczynski, J. Burda, J. Phys. Chem. A 2008, 112, 256–267;
- 29fM. Noguera, J. Bertran, M. Sodupe, J. Phys. Chem. A 2004, 108, 333–341;
- 29gJ. Poater, M. Sodupe, J. Bertran, M. Sola, Mol. Phys. 2005, 103, 163–173;
- 29hA. Robertazzi, J. Platts, J. Biol. Inorg. Chem. 2005, 10, 854–866.
- 30V. Noelia, B. Carmen, L. Arturo, R. José, S. Carmen, J. Phys. Chem. C 2010, 114, 15924–15930.
- 31
- 31aP. Rothemund, Nature 2006, 440, 297–302;
- 31bY. Ke, S. Lindsay, Y. Chang, Y. Liu, H. Yan, Science 2008, 319, 180–183.
- 32
- 32aY. Zhang, M. Su, L. Ge, S. Ge, J. Yu, X. Song, Carbon 2013, 57, 22–33;
- 32bP. Dai, T. Yu, H. Shi, J. Xu, H. Chen, Anal. Chem. 2015, 87, 12372–12379.
- 33
- 33aM. Ma, Y. Zhou, R. Yuan, Y. Chai, Anal. Chem. 2015, 87, 11389–11397;
- 33bY. Lei, J. Zhou, Y. Chai, Y. Zhuo, R. Yuan, Anal. Chem. 2018, 90, 12270–12277.
- 34E. Jin, J. Li, K. Geng, Q. Jiang, H. Xu, Q. Xu, D. Jiang, Nat. Commun. 2018, 9, 4143.
- 35N. Myung, Z. Ding, A. J. Bard, Nano Lett. 2002, 2, 1315–1319.
- 36M. L. A. V. Heien, A. S. Khan, J. L. Ariansen, J. F. Cheer, P. E. M. Phillips, K. M. Wassum, R. M. Wightman, Proc. Natl. Acad. Sci. USA 2005, 102, 10023–10028.
- 37
- 37aR. M. Wightman, L. J. May, A. C. Michael, Anal. Chem. 1988, 60, 769A–793A;
- 37bX. Xu, H. Shi, L. Ma, W. Kang, S. Li, Luminescence 2011, 26, 93–100.
- 38
- 38aX. Liu, H. Jiang, J. Lei, H. Ju, Anal. Chem. 2007, 79, 8055–8060;
- 38bH. Peng, H. Deng, M. Jian, A. Liu, F. Bai, X. Lin, W. Chen, Microchim. Acta 2017, 184, 735–743.
- 39
- 39aX. Zhuang, X. Gao, C. Tian, D. Cui, F. Luan, Z. Wang, Y. Xiong, L. Chen, Chem. Commun. 2020, 56, 5755–5758;
- 39bT. Liu, L. Zhang, H. Song, Z. Wang, L. Yi, Luminescence 2013, 28, 530–535;
- 39cB. Wu, C. Miao, L. Yu, Z. Wang, C. Huang, N. Jia, Sens. Actuators B 2014, 195, 22–27;
- 39dL. Zhang, Y. Cheng, J. Lei, Y. Liu, Q. Hao, H. Ju, Anal. Chem. 2013, 85, 8001–8007;
- 39eL. Li, H. Liu, Y. Shen, J. Zhang, J. Zhu, Anal. Chem. 2011, 83, 661–665;
- 39fT. Yin, W. Wei, J. Zeng, Anal. Bioanal. Chem. 2006, 386, 2087–2094;
- 39gX. Guo, F. Wu, Y. Ni, S. Kokot, Anal. Chim. Acta 2016, 942, 112–120.