A High-Performance n-Type Thermoelectric Polymer from C−H/C−H Oxidative Direct Arylation Polycondensation
Yibo Shi
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072 Tianjin, P. R. China
Search for more papers by this authorXuwen Zhang
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072 Tianjin, P. R. China
Search for more papers by this authorTian Du
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072 Tianjin, P. R. China
Search for more papers by this authorProf. Yang Han
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072 Tianjin, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yunfeng Deng
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072 Tianjin, P. R. China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, 350207 Binhai New City, Fuzhou, China
Search for more papers by this authorCorresponding Author
Prof. Yanhou Geng
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072 Tianjin, P. R. China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, 350207 Binhai New City, Fuzhou, China
Search for more papers by this authorYibo Shi
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072 Tianjin, P. R. China
Search for more papers by this authorXuwen Zhang
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072 Tianjin, P. R. China
Search for more papers by this authorTian Du
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072 Tianjin, P. R. China
Search for more papers by this authorProf. Yang Han
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072 Tianjin, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yunfeng Deng
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072 Tianjin, P. R. China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, 350207 Binhai New City, Fuzhou, China
Search for more papers by this authorCorresponding Author
Prof. Yanhou Geng
School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072 Tianjin, P. R. China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, 350207 Binhai New City, Fuzhou, China
Search for more papers by this authorGraphical Abstract
C−H/C−H oxidative direct arylation polycondensation is firstly adopted to synthesize a high-performance n-type conjugated polymer using a newly developed monomer, i.e., 3,6-di(thiazol-5-yl)-diketopyrrolopyrrole (Tz-5-DPP). After n-doping, the polymer exhibited electric conductivity values up to 8 S cm−1 and power factors up to 106 μW m−1 K−2.
Abstract
n-Type conjugated polymers (CPs) are crucial in the applications of organic electronics. Direct coupling of electron-deficient C−H monomer via selective C−H activation, namely C−H/C−H oxidative direct arylation polycondensation (Oxi-DArP), is an ideal approach toward such CPs. Herein, Oxi-DArP is firstly adopted to synthesize a high-performance n-type CP using a newly developed monomer, i.e., 3,6-di(thiazol-5-yl)-diketopyrrolopyrrole (Tz-5-DPP). Tz-5-DPP based homopolymer PTz-5-DPP with a molecular weight of 22 kDa has been synthesized via Oxi-DArP. After n-doping, PTz-5-DPP films exhibited electric conductivity values up to 8 S cm−1 and power factors (PFs) up to 106 μW m−1 K−2. Notably, this PF value is the highest for n-type polymer thermoelectric materials to date. The Oxi-DArP synthesis and the excellent n-type performance of the polymer make this work an important step toward the straightforward and sustainable preparation of high-performance n-type polymer semiconductors.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202219262-sup-0001-crystal_file.cif376 KB | Supporting Information |
anie202219262-sup-0001-misc_information.pdf4.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Yang, Z. Y. Zhao, S. Wang, Y. L. Guo, Y. Q. Liu, Chem 2018, 4, 2748–2785;
- 1bM. Goel, M. Thelakkat, Macromolecules 2020, 53, 3632–3642;
- 1cJ. Rivnay, S. Inal, A. Salleo, R. M. Owens, M. Berggren, G. G. Malliaras, Nat. Rev. Mater. 2018, 3, 17086;
- 1dY. Lu, J. Y. Wang, J. Pei, Acc. Chem. Res. 2021, 54, 2871–2883;
- 1eX. Guo, A. Facchetti, Nat. Mater. 2020, 19, 922–928;
- 1fH. Bronstein, C. B. Nielsen, B. C. Schroeder, I. McCulloch, Nat. Chem. Rev. 2020, 4, 66–77.
- 2
- 2aH. L. Sun, X. G. Guo, A. Facchetti, Chem 2020, 6, 1310–1326;
- 2bK. Feng, H. Guo, H. Sun, X. Guo, Acc. Chem. Res. 2021, 54, 3804–3817;
- 2cS. Griggs, A. Marks, H. Bristow, I. McCulloch, J. Mater. Chem. C 2021, 9, 8099–8128;
- 2dH. Y. Jia, T. Lei, J. Mater. Chem. C 2019, 7, 12809–12821;
- 2eY. Sui, Y. F. Deng, T. Du, Y. B. Shi, Y. H. Geng, Mater. Chem. Front. 2019, 3, 1932–1951.
- 3
- 3aJ. R. Pouliot, F. Grenier, J. T. Blaskovits, S. Beaupre, M. Leclerc, Chem. Rev. 2016, 116, 14225–14274;
- 3bT. Bura, J. T. Blaskovits, M. Leclerc, J. Am. Chem. Soc. 2016, 138, 10056–10071;
- 3cY. Ran, Y. L. Guo, Y. Q. Liu, Mater. Horiz. 2020, 7, 1955–1970;
- 3dY. J. Guo, X. L. Yang, L. W. Wang, J. Y. Duan, Y. C. Zhou, C. B. Nielsen, Y. P. Yu, J. Yang, Y. L. Guo, Z. K. Li, W. Yue, Y. Q. Liu, I. McCulloch, Macromolecules 2021, 54, 10312–10320;
- 3eY. Z. Wang, E. Zeglio, L. W. Wang, S. Y. Cong, G. M. Zhu, H. L. Liao, J. Y. Duan, Y. C. Zhou, Z. K. Li, D. Mawad, A. Herland, W. Yue, I. McCulloch, Adv. Funct. Mater. 2022, 32, 2111439;
- 3fS. Phan, C. K. Luscombe, Trends Chem. 2019, 1, 670–681;
- 3gA. S. Dudnik, T. J. Aldrich, N. D. Eastham, R. P. Chang, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2016, 138, 15699–15709.
- 4
- 4aJ. Sakamoto, M. Rehahn, G. Wegner, A. D. Schluter, Macromol. Rapid Commun. 2009, 30, 653–687;
- 4bB. Carsten, F. He, H. J. Son, T. Xu, L. Yu, Chem. Rev. 2011, 111, 1493–1528;
- 4cT. Zheng, A. M. Schneider, L. Yu, Synthetic Methods for Conjugated Polymers and Carbon Materials, Wiley-VCH, Weinheim, 2017, pp. 1–58.
10.1002/9783527695959.ch1 Google Scholar
- 5Q. L. Wang, B. H. Zhang, L. H. Liu, Y. G. Chen, Y. Qu, X. J. Zhang, J. W. Yang, Z. Y. Xie, Y. H. Geng, L. X. Wang, F. S. Wang, J. Phys. Chem. C 2012, 116, 21727–21733.
- 6
- 6aL. G. Mercier, M. Leclerc, Acc. Chem. Res. 2013, 46, 1597–1605;
- 6bK. Okamoto, J. Zhang, J. B. Housekeeper, S. R. Marder, C. K. Luscombe, Macromolecules 2013, 46, 8059–8078;
- 6cA. L. Mayhugh, P. Yadav, C. K. Luscombe, J. Am. Chem. Soc. 2022, 144, 6123–6135;
- 6dM. Wakioka, F. Ozawa, Asian J. Org. Chem. 2018, 7, 1206–1216;
- 6eR. Matsidik, H. Komber, A. Luzio, M. Caironi, M. Sommer, J. Am. Chem. Soc. 2015, 137, 6705–6711;
- 6fS. Broll, F. Nubling, A. Luzio, D. Lentzas, H. Komber, M. Caironi, M. Sommer, Macromolecules 2015, 48, 7481–7488;
- 6gY. H. Geng, Y. Sui, Acta Polym. Sin. 2019, 50, 109–117;
- 6hK. Guo, Y. Jiang, Y. Sui, Y. F. Deng, Y. H. Geng, Chin. J. Polym. Sci. 2019, 37, 1099–1104.
- 7
- 7aQ. Zhang, X. Wan, Y. Lu, Y. Li, Y. Li, C. Li, H. Wu, Y. Chen, Chem. Commun. 2014, 50, 12497–12499;
- 7bH. Aoki, H. Saito, Y. Shimoyama, J. Kuwabara, T. Yasuda, T. Kanbara, ACS Macro Lett. 2018, 7, 90–94;
- 7cA. Faradhiyani, Q. Zhang, K. Maruyama, J. Kuwabara, T. Yasuda, T. Kanbara, Mater. Chem. Front. 2018, 2, 1306–1309;
- 7dG. S. Collier, J. R. Reynolds, ACS Macro Lett. 2019, 8, 931–936;
- 7eT. Doba, L. Ilies, W. Sato, R. Shang, E. Nakamura, Nat. Catal. 2021, 4, 631–638;
- 7fQ. Huang, X. Qin, B. Li, J. Lan, Q. Guo, J. You, Chem. Commun. 2014, 50, 13739–13741;
- 7gH. S. Lin, T. Doba, W. Sato, Y. Matsuo, R. Shang, E. Nakamura, Angew. Chem. Int. Ed. 2022, 61, e202203949;
- 7hQ. Zhang, Y. F. Li, Y. Lu, H. J. Zhang, M. M. Li, Y. Yang, J. Wang, Y. S. Chen, C. X. Li, Polymer 2015, 68, 227–233;
- 7iQ. Guo, D. Wu, J. You, ChemSusChem 2016, 9, 2765–2768;
- 7jQ. Zhang, M. Chang, Y. Lu, Y. Sun, C. Li, X. Yang, M. Zhang, Y. Chen, Macromolecules 2018, 51, 379–388;
- 7kL. J. Kang, L. Xing, C. K. Luscombe, Polym. Chem. 2019, 10, 486–493;
- 7lD. Han, J. Li, Q. Zhang, Z. He, Z. Wu, J. Chu, Y. Lu, Polymer 2021, 13, 254;
- 7mQ. Guo, R. Jiang, D. Wu, J. You, Macromol. Rapid Commun. 2016, 37, 794–798;
- 7nD. Adamczak, H. Komber, A. Illy, A. D. Scaccabarozzi, M. Caironi, M. Sommer, Macromolecules 2019, 52, 7251–7259;
- 7oK. Tsuchiya, K. Ogino, Polym. J. 2013, 45, 281–286;
- 7pN. S. Gobalasingham, S. Noh, B. C. Thompson, Polym. Chem. 2016, 7, 1623–1631;
- 7qQ. Wang, S. V. Lenjani, O. Dolynchuk, A. D. Scaccabarozzi, H. Komber, Y. J. Guo, F. Gunther, S. Gemming, R. Magerle, M. Caironi, M. Sommer, Chem. Mater. 2021, 33, 668–677.
- 8Y. Lin, H. Fan, Y. Li, X. Zhan, Adv. Mater. 2012, 24, 3087–3106.
- 9Q. Liu, S. E. Bottle, P. Sonar, Adv. Mater. 2020, 32, 1903882.
- 10
- 10aI. Kang, H. J. Yun, D. S. Chung, S. K. Kwon, Y. H. Kim, J. Am. Chem. Soc. 2013, 135, 14896–14899;
- 10bY. Gao, J. H. Bai, Y. Sui, Y. Han, Y. F. Deng, H. K. Tian, Y. H. Geng, F. S. Wang, Macromolecules 2018, 51, 8752–8760;
- 10cZ. Wang, M. Gao, C. He, W. Shi, Y. Deng, Y. Han, L. Ye, Y. Geng, Adv. Mater. 2022, 34, 2108255.
- 11
- 11aW. Li, W. S. Roelofs, M. Turbiez, M. M. Wienk, R. A. Janssen, Adv. Mater. 2014, 26, 3304–3309;
- 11bA. D. Zhang, C. Y. Xiao, D. Meng, Q. Wang, X. T. Zhang, W. P. Hu, X. W. Zhan, Z. H. Wang, R. A. J. Janssen, W. W. Li, J. Mater. Chem. C 2015, 3, 8255–8261;
- 11cZ. B. Yuan, B. Y. Fu, S. Thomas, S. Y. Zhang, G. DeLuca, R. Chang, L. Lopez, C. Fares, G. Y. Zhang, J. L. Bredas, E. Reichmanis, Chem. Mater. 2016, 28, 6045–6049.
- 12H. Huang, L. Yang, A. Facchetti, T. J. Marks, Chem. Rev. 2017, 117, 10291–10318.
- 13Q. Wang, S. Bockmann, F. Gunther, M. Streiter, M. Zerson, A. D. Scaccabarozzi, W. L. Tan, H. Komber, C. Deibel, R. Magerle, S. Gemming, C. R. McNeill, M. Caironi, M. R. Hansen, M. Sommer, Chem. Mater. 2021, 33, 2635–2645.
- 14L. X. Shi, Y. L. Guo, W. P. Hu, Y. Q. Liu, Mater. Chem. Front. 2017, 1, 2423–2456.
- 15J. Dhar, N. Venkatramaiah, A. Anitha, S. Patil, J. Mater. Chem. C 2014, 2, 3457–3466.
- 16
- 16aJ. Huang, J. Chan, Y. Chen, C. J. Borths, K. D. Baucom, R. D. Larsen, M. M. Faul, J. Am. Chem. Soc. 2010, 132, 3674–3675;
- 16bS. I. Gorelsky, Organometallics 2012, 31, 794–797.
- 17J. F. Hartwig, Inorg. Chem. 2007, 46, 1936–1947.
- 18
- 18aT. Korenaga, K. Abe, A. Ko, R. Maenishi, T. Sakai, Organometallics 2010, 29, 4025–4035;
- 18bY. P. Budiman, A. Jayaraman, A. Friedrich, F. Kerner, U. Radius, T. B. Marder, J. Am. Chem. Soc. 2020, 142, 6036–6050.
- 19
- 19aF. C. Krebs, R. B. Nyberg, M. Jorgensen, Chem. Mater. 2004, 16, 1313–1318;
- 19bO. Usluer, M. Abbas, G. Wantz, L. Vignau, L. Hirsch, E. Grana, C. Brochon, E. Cloutet, G. Hadziioannou, ACS Macro Lett. 2014, 3, 1134–1138;
- 19cK. T. Nielsen, H. Spanggaard, F. C. Krebs, Macromolecules 2005, 38, 1180–1189.
- 20M. S. Vezie, S. Few, I. Meager, G. Pieridou, B. Dorling, R. S. Ashraf, A. R. Goni, H. Bronstein, I. McCulloch, S. C. Hayes, M. Campoy-Quiles, J. Nelson, Nat. Mater. 2016, 15, 746–753.
- 21
- 21aT. Lei, J. H. Dou, X. Y. Cao, J. Y. Wang, J. Pei, Adv. Mater. 2013, 25, 6589–6593;
- 21bY. Q. Zheng, T. Lei, J. H. Dou, X. Xia, J. Y. Wang, C. J. Liu, J. Pei, Adv. Mater. 2016, 28, 7213–7219;
- 21cT. Lei, J. H. Dou, Z. J. Ma, C. H. Yao, C. J. Liu, J. Y. Wang, J. Pei, J. Am. Chem. Soc. 2012, 134, 20025–20028;
- 21dC. S. Dong, B. Meng, J. Liu, L. X. Wang, ACS Appl. Mater. Interfaces 2020, 12, 10428–10433;
- 21eR. Kim, P. S. K. Amegadze, I. Kang, H. J. Yun, Y. Y. Noh, S. K. Kwon, Y. H. Kim, Adv. Funct. Mater. 2013, 23, 5719–5727.
- 22Y. Lu, Z. D. Yu, H. I. Un, Z. F. Yao, H. Y. You, W. Jin, L. Li, Z. Y. Wang, B. W. Dong, S. Barlow, E. Longhi, C. A. Di, D. Zhu, J. Y. Wang, C. Silva, S. R. Marder, J. Pei, Adv. Mater. 2021, 33, 2005946.
- 23
- 23aC. Kanimozhi, N. Yaacobi-Gross, K. W. Chou, A. Amassian, T. D. Anthopoulos, S. Patil, J. Am. Chem. Soc. 2012, 134, 16532–16535;
- 23bC. Kanimozhi, N. Yaacobi-Gross, E. K. Burnett, A. L. Briseno, T. D. Anthopoulos, U. Salzner, S. Patil, Phys. Chem. Chem. Phys. 2014, 16, 17253–17265;
- 23cJ. R. Pouliot, B. Sun, M. Leduc, A. Najari, Y. N. Li, M. Leclerc, Polym. Chem. 2015, 6, 278–282.
- 24W. Zhao, J. Ding, Y. Zou, C. A. Di, D. Zhu, Chem. Soc. Rev. 2020, 49, 7210–7228.
- 25
- 25aC. Dong, S. Deng, B. Meng, J. Liu, L. Wang, Angew. Chem. Int. Ed. 2021, 60, 16184–16190;
- 25bY. Wang, K. Takimiya, Adv. Mater. 2020, 32, 2002060;
- 25cK. Feng, H. Guo, J. Wang, Y. Shi, Z. Wu, M. Su, X. Zhang, J. H. Son, H. Y. Woo, X. Guo, J. Am. Chem. Soc. 2021, 143, 1539–1552;
- 25dJ. Han, E. Tiernan, T. Lee, A. Chiu, P. McGuiggan, N. Adams, J. A. Tomko, P. E. Hopkins, S. M. Thon, J. D. Tovar, H. E. Katz, Adv. Mater. 2022, 34, 2201062;
- 25eJ. Liu, G. Ye, H. G. O. Potgieser, M. Koopmans, S. Sami, M. I. Nugraha, D. R. Villalva, H. Sun, J. Dong, X. Yang, X. Qiu, C. Yao, G. Portale, S. Fabiano, T. D. Anthopoulos, D. Baran, R. W. A. Havenith, R. C. Chiechi, L. J. A. Koster, Adv. Mater. 2021, 33, 2006694;
- 25fM. Alsufyani, M. A. Stoeckel, X. Chen, K. Thorley, R. K. Hallani, Y. Puttisong, X. Ji, D. Meli, B. D. Paulsen, J. Strzalka, K. Regeta, C. Combe, H. Chen, J. Tian, J. Rivnay, S. Fabiano, I. McCulloch, Angew. Chem. Int. Ed. 2022, 61, e202113078;
- 25gA. Marks, X. Chen, R. Wu, R. B. Rashid, W. Jin, B. D. Paulsen, M. Moser, X. Ji, S. Griggs, D. Meli, X. Wu, H. Bristow, J. Strzalka, N. Gasparini, G. Costantini, S. Fabiano, J. Rivnay, I. McCulloch, J. Am. Chem. Soc. 2022, 144, 4642–4656.
- 26S. van Reenen, M. Kemerink, Org. Electron. 2014, 15, 2250–2255.
- 27
- 27aB. D. Naab, S. Guo, S. Olthof, E. G. Evans, P. Wei, G. L. Millhauser, A. Kahn, S. Barlow, S. R. Marder, Z. Bao, J. Am. Chem. Soc. 2013, 135, 15018–15025;
- 27bK. Shi, F. Zhang, C. A. Di, T. W. Yan, Y. Zou, X. Zhou, D. Zhu, J. Y. Wang, J. Pei, J. Am. Chem. Soc. 2015, 137, 6979–6982;
- 27cD. Huang, H. Yao, Y. Cui, Y. Zou, F. Zhang, C. Wang, H. Shen, W. Jin, J. Zhu, Y. Diao, W. Xu, C. A. Di, D. Zhu, J. Am. Chem. Soc. 2017, 139, 13013–13023.
- 28Y. Sun, C. A. Di, W. Xu, D. B. Zhu, Adv. Electron. Mater. 2019, 5, 1800825.
- 29J. Liu, G. Ye, B. V. Zee, J. Dong, X. Qiu, Y. Liu, G. Portale, R. C. Chiechi, L. J. A. Koster, Adv. Mater. 2018, 30, 1804290.
- 30W. Ma, K. Shi, Y. Wu, Z. Y. Lu, H. Y. Liu, J. Y. Wang, J. Pei, ACS Appl. Mater. Interfaces 2016, 8, 24737–24743.
- 31X. Yan, M. Xiong, X. Y. Deng, K. K. Liu, J. T. Li, X. Q. Wang, S. Zhang, N. Prine, Z. Zhang, W. Huang, Y. Wang, J. Y. Wang, X. Gu, S. K. So, J. Zhu, T. Lei, Nat. Commun. 2021, 12, 5723.
- 32M. Kim, S. U. Ryu, S. A. Park, K. Choi, T. Kim, D. Chung, T. Park, Adv. Funct. Mater. 2020, 30, 1904545.
- 33C. Y. Yang, W. L. Jin, J. Wang, Y. F. Ding, S. Nong, K. Shi, Y. Lu, Y. Z. Dai, F. D. Zhuang, T. Lei, C. A. Di, D. Zhu, J. Y. Wang, J. Pei, Adv. Mater. 2018, 30, 1802850.
- 34Deposition Number 2203963 (compound 6a) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.