Superlattice in a Ru Superstructure for Enhancing Hydrogen Evolution
Juntao Zhang
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
These authors contributed equally to this work.
Search for more papers by this authorXinnan Mao
Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorSuling Wang
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorLingling Liang
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorMaofeng Cao
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Prof. Lu Wang
Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorGen Li
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Prof. Yong Xu
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Prof. Xiaoqing Huang
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorJuntao Zhang
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
These authors contributed equally to this work.
Search for more papers by this authorXinnan Mao
Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorSuling Wang
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorLingling Liang
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorMaofeng Cao
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Prof. Lu Wang
Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorGen Li
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Prof. Yong Xu
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Prof. Xiaoqing Huang
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorGraphical Abstract
A facile wet-chemical method for synthesizing two-dimensional Ru multilayered nanosheets with a superlattice is reported and the significance of the superlattice on electrocatalysis is demonstrated. Theoretical calculations reveal that the superlattice between the adjacent Ru layers can induce the strain effect, which leads to the lattice contraction and the weakening of the *H adsorption ability, as a result of improved HER performance.
Abstract
Superlattices are attracting extensive attention due to their unique properties. Nevertheless, the observations of superlattices are limited to those layered structures with weak interlayered interactions, and the effect of the superlattice in metal-based nanostructures on catalysis is unexplored yet. We here report a facile wet-chemical method for synthesizing two-dimensional Ru multilayered nanosheets (Ru MNSs) with a superlattice. Characterizations reveal that the superlattice is formed by stacking Ru layers with twisted angles from 2° to 30°. Owing to the strong synergy between the adjacent layers, Ru MNSs can serve as an efficient catalyst for the alkaline hydrogen evolution reaction (HER). Theoretical calculations reveal that the superlattice can induce the strain effect, which leads to lattice contraction and weak *H adsorption ability, as a result of improved HER performance. This work sheds new light on the utilization of the superlattice on enhancing catalysis in metal-based materials.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202116867-sup-0001-misc_information.pdf2.3 MB | Supporting Information |
anie202116867-sup-0001-Supporting_Information_Movie.avi11.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312–1314.
- 2K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666–669.
- 3K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197–200.
- 4Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699–712.
- 5M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang, Nat. Chem. 2013, 5, 263–275.
- 6Y. G. Li, H. L. Wang, L. M. Xie, Y. Y. Liang, G. S. Hong, H. J. Dai, J. Am. Chem. Soc. 2011, 133, 7296–7299.
- 7W. D. Zhou, M. Y. Chen, M. M. Guo, A. J. Hong, T. Yu, X. F. Luo, C. L. Yuan, W. Lei, S. G. Wang, Nano Lett. 2020, 20, 2923–2930.
- 8Q. Wang, D. O′Hare, Chem. Rev. 2012, 112, 4124–4155.
- 9M. Gong, Y. G. Li, H. L. Wang, Y. Y. Liang, J. Z. Wu, J. G. Zhou, J. Wang, T. Regier, F. Wei, H. J. Dai, J. Am. Chem. Soc. 2013, 135, 8452–8455.
- 10H. Labuhn, D. Barredo, S. Ravets, S. de Leseleuc, T. Macri, T. Lahaye, A. Browaeys, Nature 2016, 534, 667–670.
- 11P. P. Zhang, F. X. Wang, M. H. Yu, X. D. Zhuang, X. L. Feng, Chem. Soc. Rev. 2018, 47, 7426–7451.
- 12C. Zhang, B. Xie, Y. J. Zou, D. Zhu, L. Lei, D. P. Zhao, H. M. Nie, Adv. Drug Delivery Rev. 2018, 132, 33–56.
- 13B. Q. Luan, M. A. Kuroda, ACS Nano 2020, 14, 13137–13145.
- 14H. Yi, M. Yan, D. L. Huang, G. M. Zeng, C. Lai, M. F. Li, X. Q. Huo, L. Qin, S. Y. Liu, X. G. Liu, B. S. Li, H. Wang, M. C. Shen, Y. K. Fu, X. Y. Guo, Appl. Catal. B 2019, 250, 52–62.
- 15L. M. Wang, W. L. Chen, D. D. Zhang, Y. P. Du, R. Amal, S. Z. Qiao, J. W. Bf, Z. Y. Yin, Chem. Soc. Rev. 2019, 48, 5310–5349.
- 16Q. Yao, B. L. Huang, N. Zhang, M. Z. Sun, Q. Shao, X. Q. Huang, Angew. Chem. Int. Ed. 2019, 58, 13983–13988; Angew. Chem. 2019, 131, 14121–14126.
- 17F. Song, X. L. Hu, Nat. Commun. 2014, 5, 4477.
- 18H. Y. Jin, C. X. Guo, X. Liu, J. L. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S. Z. Qiao, Chem. Rev. 2018, 118, 6337–6408.
- 19W. Zhou, Z. Jiang, M. Chen, Z. Li, X. Luo, M. Guo, Y. Yang, T. Yu, C. Yuan, S. Wang, Chem. Eng. J. 2022, 428, 131210.
- 20C. L. Tan, X. H. Cao, X. J. Wu, Q. Y. He, J. Yang, X. Zhang, J. Z. Chen, W. Zhao, S. K. Han, G. H. Nam, M. Sindoro, H. Zhang, Chem. Rev. 2017, 117, 6225–6331.
- 21M. C. Luo, Z. L. Zhao, Y. L. Zhang, Y. J. Sun, Y. Xing, F. Lv, Y. Yang, X. Zhang, S. Hwang, Y. N. Qin, J. Y. Ma, F. Lin, D. Su, G. Lu, S. J. Guo, Nature 2019, 574, 81–87.
- 22Z. Y. Sun, T. Ma, H. C. Tao, Q. Fan, B. X. Han, Chem 2017, 3, 560–587.
- 23Z. Y. Sun, N. Talreja, H. C. Tao, J. Texter, M. Muhler, J. Strunk, J. F. Chen, Angew. Chem. Int. Ed. 2018, 57, 7610–7627; Angew. Chem. 2018, 130, 7734–7752.
- 24Y. F. Zhao, G. I. N. Waterhouse, G. B. Chen, X. Y. Xiong, L. Z. Wu, C. H. Tung, T. R. Zhang, Chem. Soc. Rev. 2019, 48, 1972–2010.
- 25Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, P. Jarillo-Herrero, Nature 2018, 556, 80–86.
- 26B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, R. C. Ashoori, Science 2013, 340, 1427–1430.
- 27X. B. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Y. Zhang, A. Bachtold, A. H. MacDonald, D. K. Efetov, Nature 2019, 574, 653–657.
- 28E. M. Alexeev, D. A. Ruiz-Tijerina, M. Danovich, M. J. Hamer, D. J. Terry, P. K. Nayak, S. Ahn, S. Pak, J. Lee, J. I. Sohn, M. R. Molas, M. Koperski, K. Watanabe, T. Taniguchi, K. S. Novoselov, R. V. Gorbachev, H. S. Shin, V. I. Fal′ko, A. I. Tartakovskii, Nature 2019, 567, 81–86.
- 29A. Kerelsky, L. J. McGilly, D. M. Kennes, L. D. Xian, M. Yankowitz, S. W. Chen, K. Watanabe, T. Taniguchi, J. Hone, C. Dean, A. Rubio, A. N. Pasupathy, Nature 2019, 572, 95–100.
- 30L. B. Xie, L. L. Wang, W. W. Zhao, S. J. Liu, W. Huang, Q. Zhao, Nat. Commun. 2021, 12, 5070.
- 31D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan, W. A. de Heer, P. N. First, J. A. Stroscio, Science 2009, 324, 924–927.
- 32G. H. Li, A. Luican, J. dos Santos, A. H. Castro Neto, A. Reina, J. Kong, E. Y. Andrei, Nat. Phys. 2010, 6, 109–113.
- 33I. Brihuega, P. Mallet, H. Gonzalez-Herrero, G. T. de Laissardiere, M. M. Ugeda, L. Magaud, J. M. Gomez-Rodriguez, F. Yndurain, J. Y. Veuillen, Phys. Rev. Lett. 2012, 109, 196802.
- 34L. L. Liu, Y. H. Sun, X. Q. Cui, K. Qi, X. He, Q. L. Bao, W. L. Ma, J. Lu, H. Y. Fang, P. Zhang, L. R. Zheng, L. P. Yu, D. J. Singh, Q. H. Xiong, L. J. Zhang, W. T. Zheng, Nat. Commun. 2019, 10, 4472.
- 35Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Nature 2018, 556, 43–50.
- 36L. Ci, L. Song, C. H. Jin, D. Jariwala, D. X. Wu, Y. J. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, P. M. Ajayan, Nat. Mater. 2010, 9, 430–435.
- 37Z. G. Chen, Z. W. Shi, W. Yang, X. B. Lu, Y. Lai, H. G. Yan, F. Wang, G. Y. Zhang, Z. Q. Li, Nat. Commun. 2014, 5, 4461.
- 38W. Yang, X. B. Lu, G. R. Chen, S. Wu, G. B. Xie, M. Cheng, D. M. Wang, R. Yang, D. X. Shi, K. Watanabe, T. Taniguchi, C. Voisin, B. Placais, Y. B. Zhang, G. Y. Zhang, Nano Lett. 2016, 16, 2387–2392.
- 39C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, P. Kim, Nature 2013, 497, 598–602.
- 40H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, A. Javey, Proc. Natl. Acad. Sci. USA 2014, 111, 6198–6202.
- 41Y. H. Tang, J. Gu, S. Liu, K. Watanabe, T. Taniguchi, J. Hone, K. F. Mak, J. Shan, Nat. Nanotechnol. 2021, 16, 3791.
- 42G. Gumbs, P. Fekete, Phys. Rev. B 1997, 56, 3787–3791.
- 43P. Moon, M. Koshino, Phys. Rev. B 2013, 88, 241412.
- 44L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea, V. I. Fal'ko, A. K. Geim, Nature 2013, 497, 594–597.
- 45K. Tran, G. Moody, F. C. Wu, X. B. Lu, J. Choi, K. Kim, A. Rai, D. A. Sanchez, J. M. Quan, A. Singh, J. Embley, A. Zepeda, M. Campbell, T. Autry, T. Taniguchi, K. Watanabe, N. S. Lu, S. K. Banerjee, K. L. Silverman, S. Kim, E. Tutuc, L. Yang, A. H. MacDonald, X. Q. Li, Nature 2019, 567, 71–75.
- 46C. D. Zhang, C. P. Chuu, X. B. Ren, M. Y. Li, L. J. Li, C. H. Jin, M. Y. Chou, C. K. Shih, Sci. Adv. 2017, 3, e1601459.
- 47Y. C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M. Y. Li, X. Peng, M. J. Kim, L. J. Li, R. M. Wallace, S. Datta, J. A. Robinson, Nat. Commun. 2015, 6, 7311.
- 48Z. Jiang, W. Zhou, A. Hong, M. Guo, X. Luo, C. Yuan, ACS Energy Lett. 2019, 4, 2830–2835.
- 49M. Yankowitz, J. M. Xue, D. Cormode, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, B. J. LeRoy, Nat. Phys. 2012, 8, 382–386.
- 50W. Yang, G. R. Chen, Z. W. Shi, C. C. Liu, L. C. Zhang, G. B. Xie, M. Cheng, D. M. Wang, R. Yang, D. X. Shi, K. Watanabe, T. Taniguchi, Y. G. Yao, Y. B. Zhang, G. Y. Zhang, Nat. Mater. 2013, 12, 792–797.
- 51M. X. Li, H. Y. Wang, W. D. Zhu, W. M. Li, C. Wang, X. F. Lu, Adv. Sci. 2020, 7, 1901833.
- 52G. G. Liu, W. Zhou, B. Chen, Q. H. Zhang, X. Y. Cui, B. Li, Z. C. Lai, Y. Chen, Z. C. Zhang, L. Gu, H. Zhang, Nano Energy 2019, 66, 104173.
- 53M. Grimsditch, J. E. Mattson, C. H. Sowers, S. D. Bader, M. J. Peters, Phys. Rev. Lett. 1996, 77, 2025–2028.
- 54C. L. Yuan, Y. X. Mei, A. J. Hong, T. Yu, Y. Yang, F. Y. Zeng, K. Xu, Q. L. Li, X. F. Luo, J. He, W. Lei, J. Phys. Chem. C 2017, 121, 5800–5804.
- 55H. Zhou, X. Luo, C. Yuan, A. Hong, J. He, W. Lei, Appl. Phys. Lett. 2019, 114, 253101.