Dendritic Mesoporous Nanoparticles: Structure, Synthesis and Properties
Dr. Chun Xu
School of Dentistry, The University of Queensland, Brisbane, Queensland, 4066 Australia
Search for more papers by this authorDr. Chang Lei
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072 Australia
Search for more papers by this authorDr. Yue Wang
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072 Australia
Search for more papers by this authorCorresponding Author
Prof. Chengzhong Yu
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072 Australia
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorDr. Chun Xu
School of Dentistry, The University of Queensland, Brisbane, Queensland, 4066 Australia
Search for more papers by this authorDr. Chang Lei
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072 Australia
Search for more papers by this authorDr. Yue Wang
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072 Australia
Search for more papers by this authorCorresponding Author
Prof. Chengzhong Yu
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072 Australia
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorGraphical Abstract
Abstract
Recently, dendritic mesoporous silica nanoparticles with widespread applications have attracted great interest. Despite many publications (>800), the terminology “dendritic” is ambiguous. Understanding what possible “dendritic structures” are, their formation mechanisms and the underlying structure–property relationship is fundamentally important. With the advance of characterization techniques such as electron tomography, two types of tree-branch-like and flower-like structures can be distinguished, both described as “dendritic” in the literature. In this Review, we start with the definition of “dendritic”, then provide critical analysis of reported dendritic silica nanoparticles according to their structural classification. We update the understandings of the formation mechanisms of two types of “dendritic” nanoparticles, highlighting how to control their structural parameters. Applications of dendritic mesoporous nanoparticles are also reviewed with a focus on the biomedical field, providing new insights into the structure–property relationship in this family of nanomaterials.
Conflict of interest
The authors declare no conflict of interest.
References
- 1J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834–10843.
- 2C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710–712.
- 3T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 1990, 63, 988–992.
- 4D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548–552.
- 5C. Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V. S. Y. Lin, J. Am. Chem. Soc. 2003, 125, 4451–4459.
- 6D. R. Radu, C. Y. Lai, K. Jeftinija, E. W. Rowe, S. Jeftinija, V. S. Y. Lin, J. Am. Chem. Soc. 2004, 126, 13216–13217.
- 7X. Du, S. Z. Qiao, Small 2015, 11, 392–413.
- 8M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 2007, 46, 7548–7558; Angew. Chem. 2007, 119, 7692–7703.
- 9Y. Chen, H. R. Chen, J. L. Shi, Adv. Mater. 2013, 25, 3144–3176.
- 10Y. Wan, D. Zhao, Chem. Rev. 2007, 107, 2821–2860.
- 11M. Kruk, E. B. Celer, J. R. Matos, S. Pikus, M. Jaroniec, J. Phys. Chem. B 2005, 109, 3838–3843.
- 12C. M. Yang, W. Schmidt, F. Kleitz, J. Mater. Chem. 2005, 15, 5112–5114.
- 13P. P. Yang, S. L. Gai, J. Lin, Chem. Soc. Rev. 2012, 41, 3679–3698.
- 14C. Xu, M. H. Yu, O. Noonan, J. Zhang, H. Song, H. W. Zhang, C. Lei, Y. T. Niu, X. D. Huang, Y. N. Yang, C. Z. Yu, Small 2015, 11, 5949–5955.
- 15Y. B. Wang, K. K. Hu, J. He, Y. T. Zhang, RSC Adv. 2019, 9, 24783–24790.
- 16Y. Sun, F. Ding, Z. X. Zhou, C. L. Li, M. P. Pu, Y. L. Xu, Y. B. Zhan, X. J. Lu, H. B. Li, G. F. Yang, Y. Sun, P. J. Stang, Proc. Natl. Acad. Sci. USA 2019, 116, 1968–1973.
- 17Y. Pan, J. Yang, X. Luan, X. Liu, X. Li, J. Yang, T. Huang, L. Sun, Y. Wang, Y. Lin, Y. Song, Sci. Adv. 2019, 5, eaav7199.
- 18X. Du, B. Y. Shi, J. Liang, J. X. Bi, S. Dai, S. Z. Qiao, Adv .Mater. 2013, 25, 5981–5985.
- 19X. Du, J. H. He, Langmuir 2011, 27, 2972–2979.
- 20X. Y. Li, X. Du, J. H. He, Langmuir 2010, 26, 13528–13534.
- 21X. Du, X. Y. Li, J. H. He, ACS Appl. Mater. Interfaces 2010, 2, 2365–2372.
- 22X. Du, J. H. He, Nanoscale 2012, 4, 852–859.
- 23Y. J. Yu, J. L. Xing, J. L. Pang, S. H. Jiang, K. F. Lam, T. Q. Yang, Q. S. Xue, K. Zhang, P. Wu, ACS Appl. Mater. Interfaces 2014, 6, 22655–22665.
- 24X. Du, X. Y. Li, H. W. Huang, J. H. He, X. J. Zhang, Nanoscale 2015, 7, 6173–6184.
- 25L. L. Dai, Q. F. Zhang, J. H. Li, X. K. Shen, C. Y. Mu, K. Y. Cai, ACS Appl. Mater. Interfaces 2015, 7, 7357–7372.
- 26V. Polshettiwar, D. Cha, X. X. Zhang, J. M. Basset, Angew. Chem. Int. Ed. 2010, 49, 9652–9656; Angew. Chem. 2010, 122, 9846–9850.
- 27D. S. Moon, J. K. Lee, Langmuir 2012, 28, 12341–12347.
- 28J. Y. Fu, J. Q. Jiao, H. Song, Z. Y. Gu, Y. Liu, J. Geng, K. S. Jack, A. Du, J. Tang, C. Z. Yu, Chem. Mater. 2020, 32, 341–347.
- 29H. J. Zhang, Z. Y. Li, P. P. Xu, R. F. Wu, Z. Jiao, Chem. Commun. 2010, 46, 6783–6785.
- 30S. W. Lim, H. G. Jang, H. I. Sim, C. H. Shin, J. H. Kim, G. Seo, J. Porous Mater. 2014, 21, 797–809.
- 31K. Zhang, L. L. Xu, J. G. Jiang, N. Calin, K. F. Lam, S. J. Zhang, H. H. Wu, G. D. Wu, B. Albela, L. Bonneviot, P. Wu, J. Am. Chem. Soc. 2013, 135, 2427–2430.
- 32A. K. Meka, P. L. Abbaraju, H. Song, C. Xu, J. Zhang, H. W. Zhang, M. H. Yu, C. Z. Yu, Small 2016, 12, 5169–5177.
- 33Y. B. Wang, X. Du, Z. Liu, S. H. Shi, H. M. Lv, J. Mater. Chem. A 2019, 7, 5111–5152.
- 34Y. Wang, B. Zhang, X. Ding, X. Du, Nano Today 2021, 39, 101231.
- 35See ref. [33].
- 36See ref. [34].
- 37Y. B. Wang, Z. Liu, S. H. Shi, K. K. Hu, Y. T. Zhang, M. Guo, J. Inorg. Mater. 2018, 33, 1274–1288.
- 38X. Du, C. X. Zhao, H. W. Huang, Y. Q. Wen, X. J. Zhang, Prog. Chem. 2016, 28, 1131–1147.
- 39A. Maity, V. Polshettiwar, ChemSuschem 2017, 10, 3866–3913.
- 40M. Shaban, M. Hasanzadeh, RSC Adv. 2020, 10, 37116–37133.
- 41P. Hao, B. Peng, B. Q. Shan, T. Q. Yang, K. Zhang, Nanoscale Adv. 2020, 2, 1792–1810.
- 42R. Minamino, M. Tateno, Plos One 2014, 9, e93535.
- 43S. Carenco, S. Moldovan, L. Roiban, I. Florea, D. Portehault, K. Valle, P. Belleville, C. Boissiere, L. Rozes, N. Mezailles, M. Drillon, C. Sanchez, O. Ersen, Nanoscale 2016, 8, 1260–1279.
- 44H. Song, Y. N. Yang, J. Geng, Z. Y. Gu, J. Zou, C. Z. Yu, Adv. Mater. 2019, 31, 1801564.
- 45H. Song, Y. A. Nor, M. H. Yu, Y. N. Yang, J. Zhang, H. W. Zhang, C. Xu, N. Mitter, C. Z. Yu, J. Am. Chem. Soc. 2016, 138, 6455–6462.
- 46Y. N. Yang, S. Bernardi, H. Song, J. Zhang, M. H. Yu, J. C. Reid, E. Strounina, D. J. Searles, C. Z. Yu, Chem. Mater. 2016, 28, 704–707.
- 47P. L. Abbaraju, A. K. Meka, H. Song, Y. N. Yang, M. Jambhrunkar, J. Zhang, C. Xu, M. H. Yu, C. Z. Yu, J. Am. Chem. Soc. 2017, 139, 6321–6328.
- 48H. Song, M. H. Yu, Y. Lu, Z. Y. Gu, Y. N. Yang, M. Zhang, J. Y. Fu, C. Z. Yu, J. Am. Chem. Soc. 2017, 139, 18247–18254.
- 49Y. N. Yang, Y. T. Niu, J. Zhang, A. K. Meka, H. W. Zhang, C. Xu, C. X. C. Lin, M. H. Yu, C. Z. Yu, Small 2015, 11, 2743–2749.
- 50M. Kalantari, M. H. Yu, M. Jambhrunkar, Y. Liu, Y. N. Yang, X. D. Huang, C. Z. Yu, Mater. Chem. Front. 2018, 2, 1334–1342.
- 51M. Jambhrunkar, Y. Yang, M. Yu, M. Zhang, P. L. Abbaraju, T. Ghosh, M. Kalantari, Y. Wang, N. A. J. McMillan, C. Yu, Mater. Today Adv. 2020, 6, 100069.
- 52S. Theivendran, J. Zhang, C. Tang, M. Kalantari, Z. Gu, Y. Yang, Y. Yang, E. Strounina, A. Du, C. Yu, J. Mater. Chem. A 2019, 7, 12029–12037.
- 53Y. N. Yang, J. J. Wan, Y. T. Niu, Z. Y. Gu, J. Zhang, M. H. Yu, C. Z. Yu, Chem. Mater. 2016, 28, 9008–9016.
- 54Y. N. Yang, Y. Lu, P. L. Abbaraju, J. Zhang, M. Zhang, G. Y. Xiang, C. Z. Yu, Angew. Chem. Int. Ed. 2017, 56, 8446–8450; Angew. Chem. 2017, 129, 8566–8570.
- 55X. Du, F. Kleitz, X. Li, H. Huang, X. Zhang, S.-Z. Qiao, Adv. Funct. Mater. 2018, 28, 1707325.
- 56D. Shao, M. Li, Z. Wang, X. Zheng, Y. H. Lao, Z. Chang, F. Zhang, M. Lu, J. Yue, H. Hu, H. Yan, L. Chen, W. F. Dong, K. W. Leong, Adv. Mater. 2018, 1801198.
- 57Q. Cai, Y. Geng, X. Zhao, K. Cui, Q. Y. Sun, X. H. Chen, Q. L. Feng, H. Li, E. G. Vrieling, Microporous Mesoporous Mater. 2008, 108, 123–135.
- 58A. B. D. Nandiyanto, S. G. Kim, F. Iskandar, K. Okuyama, Microporous Mesoporous Mater. 2009, 120, 447–453.
- 59Y. Z. Zhang, Z. Z. Zhi, T. Y. Jiang, J. H. Zhang, Z. Y. Wang, S. L. Wang, J. Controlled Release 2010, 145, 257–263.
- 60P. J. Chen, S. H. Hu, W. T. Hung, S. Y. Chen, D. M. Liu, J. Mater. Chem. 2012, 22, 9568–9575.
- 61A. Maity, A. Das, D. Sen, S. Mazurnder, V. Polshettiwar, Langmuir 2017, 33, 13774–13782.
- 62J. Bahadur, A. Maity, D. Sen, A. Das, V. Polshettiwar, Langmuir 2021, 37, 6423–6434.
- 63D. S. Moon, J. K. Lee, Langmuir 2014, 30, 15574–15580.
- 64J. Ryu, W. Kim, J. Yun, K. Lee, J. Lee, H. Yu, J. H. Kim, J. J. Kim, J. Jang, ACS Appl. Mater. Interfaces 2018, 10, 11843–11851.
- 65J. N. Israelachvili, D. J. Mitchell, B. W. Ninham, J. Chem. Soc. Faraday Trans. 2 1976, 72, 1525–1568.
- 66S. Yang, X. Zhou, P. Yuan, M. Yu, S. Xie, J. Zou, G. Q. Lu, C. Yu, Angew. Chem. Int. Ed. 2007, 46, 8579–8582; Angew. Chem. 2007, 119, 8733–8736.
- 67H. M. Li, H. L. Guo, C. Lei, L. Liu, L. Q. Xu, Y. P. Feng, J. Ke, W. Fang, H. Song, C. Xu, C. Z. Yu, X. Long, Adv. Mater. 2019, 31, 1904535.
- 68Y. Wang, H. Song, M. H. Yu, C. Xu, Y. Liu, J. Tang, Y. N. Yang, C. Z. Yu, J. Mater. Chem. B 2018, 6, 4089–4095.
- 69J. Tang, A. K. Meka, S. Theivendran, Y. Wang, Y. N. Yang, H. Song, J. Y. Fu, W. H. Ban, Z. Y. Gu, C. Lei, S. M. Li, C. Z. Yu, Angew. Chem. Int. Ed. 2020, 59, 22054–22062; Angew. Chem. 2020, 132, 22238–22246.
- 70S. M. Egger, K. R. Hurley, A. Datt, G. Swindlehurst, C. L. Haynes, Chem. Mater. 2015, 27, 3193–3196.
- 71L. Ernawati, R. Balgis, T. Ogi, K. Okuyama, Langmuir 2017, 33, 783–790.
- 72S. L. Gai, P. P. Yang, P. A. Ma, D. Wang, C. X. Li, X. B. Li, N. Niu, J. Lin, J. Mater. Chem. 2011, 21, 16420–16426.
- 73T. S. Atabaev, J. H. Lee, J. J. Lee, D. W. Han, Y. H. Hwang, H. K. Kim, N. H. Hong, Nanotechnology 2013, 24, 345603.
- 74K. J. Yu, X. B. Zhang, H. W. Tong, X. Y. Yan, S. M. Liu, Mater. Lett. 2013, 106, 151–154.
- 75Q. S. Qu, Y. Min, L. H. Zhang, Q. Xu, Y. D. Yin, Anal. Chem. 2015, 87, 9631–9638.
- 76H. G. Peng, L. Xu, H. H. Wu, K. Zhang, P. Wu, Chem. Commun. 2013, 49, 2709–2711.
- 77C. Xu, Y. He, Z. H. Li, Y. A. Nor, Q. S. Ye, J. Mater. Chem. B 2018, 6, 1899–1902.
- 78Z. Y. Gu, T. Q. Liu, J. Tang, Y. N. Yang, H. Song, Z. K. Tuong, J. Y. Fu, C. Z. Yu, J. Am. Chem. Soc. 2019, 141, 6122–6126.
- 79C. Xu, L. Xiao, Y. X. Gao, Y. He, C. Lei, Y. Xiao, W. J. Sun, S. Ahadian, X. T. Zhou, A. Khademhosseini, Q. S. Ye, Nano Res. 2020, 13, 2323–2331.
- 80S. Nemec, S. Kralj, ACS Appl. Mater. Interfaces 2021, 13, 1883–1894.
- 81T. Zhao, L. Chen, R. Lin, P. Zhang, K. Lan, W. Zhang, X. Li, D. Zhao, Acc. Mater. Res. 2020, 1, 100–114.
- 82F. Wang, G. M. Pauletti, J. T. Wang, J. M. Zhang, R. C. Ewing, Y. L. Wang, D. L. Shi, Adv. Mater. 2013, 25, 3485–3489.
- 83X. M. Li, L. Zhou, Y. Wei, A. M. El-Toni, F. Zhang, D. Y. Zhao, J. Am. Chem. Soc. 2015, 137, 5903–5906.
- 84T. Suteewong, H. Sai, R. Hovden, D. Muller, M. S. Bradbury, S. M. Gruner, U. Wiesner, Science 2013, 340, 337–341.
- 85X. M. Li, L. Zhou, Y. Wei, A. M. El-Toni, F. Zhang, D. Y. Zhao, J. Am. Chem. Soc. 2014, 136, 15086–15092.
- 86H. Ujiie, A. Shimojima, K. Kuroda, Chem. Commun. 2015, 51, 3211–3214.
- 87See ref. [47].
- 88P. L. Abbaraju, M. Jambhrunkar, Y. N. Yang, Y. Liu, Y. Lu, C. Z. Yu, Chem. Commun. 2018, 54, 2020–2023.
- 89B. Y. Guan, L. Yu, X. W. Lou, J. Am. Chem. Soc. 2016, 138, 11306–11311.
- 90D. K. Shen, J. P. Yang, X. M. Li, L. Zhou, R. Y. Zhang, W. Li, L. Chen, R. Wang, F. Zhang, D. Y. Zhao, Nano Lett. 2014, 14, 923–932.
- 91Q. Yue, Y. Zhang, Y. J. Jiang, J. L. Li, H. W. Zhang, C. Z. Yu, A. A. Elzatahry, A. Alghamdi, Y. H. Deng, D. Y. Zhao, J. Am. Chem. Soc. 2017, 139, 4954–4961.
- 92Q. Yue, J. L. Li, W. Luo, Y. Zhang, A. A. Elzatahry, X. Q. Wang, C. Wang, W. Li, X. W. Cheng, A. Alghamdi, A. M. Abdullah, Y. H. Deng, D. Y. Zhao, J. Am. Chem. Soc. 2015, 137, 13282–13289.
- 93L. Yu, P. P. Pan, B. J. Yu, X. Y. Yang, Q. Yue, A. A. Alghamdi, Y. Ren, Y. H. Deng, ACS Appl. Mater. Interfaces 2021, 13, 36138–36146.
- 94T. Zhang, B. T. Huang, A. A. Elzatahry, A. Alghamdi, Q. Yue, Y. H. Deng, ACS Appl. Mater. Interfaces 2020, 12, 17913–17920.
- 95See ref. [49].
- 96P. C. Liu, Y. J. Yu, B. Peng, S. Y. Ma, T. Y. Ning, B. Q. Shan, T. Q. Yang, Q. S. Xue, K. Zhang, P. Wu, Green Chem. 2017, 19, 5575–5581.
- 97Y. Wang, Y. A. Nor, H. Song, Y. N. Yang, C. Xu, M. H. Yu, C. Z. Yu, J. Mater. Chem. B 2016, 4, 2646–2653.
- 98M. Jambhrunkar, Y. Yang, M. Yu, M. Zhang, P. L. Abbaraju, T. Ghosh, M. Kalantari, Y. Wang, N. A. J. McMillan, C. Yu, Mater. Today Adv. 2020, 6, 100069.
- 99D. Shao, M. Q. Li, Z. Wang, X. Zheng, Y. H. Lao, Z. M. Chang, F. Zhang, M. M. Lu, J. Yue, H. Z. Hu, H. Z. Yan, L. Chen, W. F. Dong, K. W. Leong, Adv. Mater. 2018, 30, 1801198.
- 100T. Z. Liu, N. Zhang, Z. G. Wang, M. Y. Wu, Y. Chen, M. Ma, H. R. Chen, J. L. Shi, ACS Nano 2017, 11, 9093–9102.
- 101M. Y. Zhou, X. Du, W. K. Li, X. Y. Li, H. W. Huang, Q. L. Liao, B. Y. Shi, X. J. Zhang, M. Q. Zhang, J. Mater. Chem. B 2017, 5, 4455–4469.
- 102W. J. Yang, Y. F. Xia, Y. Zou, F. H. Meng, J. Zhang, Z. Y. Zhong, Chem. Mater. 2017, 29, 8757–8765.
- 103S. S. Gao, H. Lin, H. X. Zhang, H. L. Yao, Y. Chen, J. L. Shi, Adv. Sci. 2019, 6, 1801733.
- 104W. X. Wang, P. Y. Wang, X. T. Tang, A. A. Elzatahry, S. W. Wang, D. Al-Dahyan, M. Y. Zhao, C. Yao, C. T. Hung, X. H. Zhu, T. C. Zhao, X. M. Li, F. Zhang, D. Y. Zhao, ACS Cent. Sci. 2017, 3, 839–846.
- 105J. Fu, Z. Gu, Y. Liu, J. Zhang, H. Song, Y. Yang, Y. Yang, O. Noonan, J. Tang, C. Yu, Chem. Sci. 2019, 10, 10388–10394.
- 106C. Deng, Y. H. Liu, F. Z. Zhou, M. Y. Wu, Q. Zhang, D. L. Yi, W. Yuan, Y. J. Wang, J. Colloid Interface Sci. 2021, 593, 424–433.
- 107Y. Wang, H. Song, Y. N. Yang, Y. Liu, J. Tang, C. Z. Yu, Chem. Mater. 2018, 30, 5770–5776.
- 108J. Gong, H. X. Wang, Y. H. Lao, H. Z. Hu, N. Vatan, J. Guo, T. C. Ho, D. T. Huang, M. Q. Li, D. Shao, K. W. Leong, Adv. Mater. 2020, 32, 2003537.
- 109E. Hines, D. Cheng, W. X. Wu, M. H. Yu, C. Xu, H. Song, C. Z. Yu, J. Mater. Sci. 2021, 56, 5830–5844.
- 110See ref. [59].
- 111See ref. [67].
- 112B. Q. Shan, J. L. Xing, T. Q. Yang, B. Peng, P. Hao, Y. X. Zong, X. Q. Chen, Q. S. Xue, K. Zhang, P. Wu, CrystEngComm 2019, 21, 4030–4035.
- 113M. Kalantari, T. Ghosh, Y. Liu, J. Zhang, J. Zou, C. Lei, C. Z. Yu, ACS Appl. Mater. Interfaces 2019, 11, 13264–13272.
- 114W. D. Tasia, C. Lei, Y. X. Cao, Q. S. Ye, Y. He, C. Xu, Nanoscale 2020, 12, 2328–2332.
- 115S. L. Gai, P. P. Yang, P. A. Ma, D. Wang, C. X. Li, X. B. Li, N. Niu, J. Lin, J. Mater. Chem. 2011, 21, 19422–19422.
- 116J. Gao, W. X. Kong, L. Y. Zhou, Y. He, L. Ma, Y. Wang, L. Y. Yin, Y. J. Jiang, Chem. Eng. J. 2017, 309, 70–79.
- 117F. Yang, A. Skripka, M. S. Tabatabaei, S. H. Hong, F. Q. Ren, Y. Huang, J. K. Oh, S. Martel, X. Y. Liu, F. Vetrone, D. L. Ma, Chem. Mater. 2019, 31, 3201–3210.
- 118F. Gao, C. Lei, Y. Liu, H. Song, Y. Q. Kong, J. J. Wan, C. Z. Yu, ACS Appl. Mater. Interfaces 2021, 13, 21507–21515.
- 119Y. Dai, D. P. Yang, D. P. Yu, S. H. Xie, B. W. Wang, J. Bu, B. Shen, W. Feng, F. Y. Li, Nanoscale 2020, 12, 5075–5083.
- 120V. Polshettiwar, J. Thivolle-Cazat, M. Taoufik, F. Stoffelbach, S. Norsic, J. M. Basset, Angew. Chem. Int. Ed. 2011, 50, 2747–2751; Angew. Chem. 2011, 123, 2799–2803.
- 121S. M. Sadeghzadeh, R. Zhiani, J. Organomet. Chem. 2018, 868, 47–54.
- 122A. S. L. Thankamony, C. Lion, F. Pourpoint, B. Singh, A. J. P. Linde, D. Carnevale, G. Bodenhausen, H. Vezin, O. Lafon, V. Polshettiwar, Angew. Chem. Int. Ed. 2015, 54, 2190–2193; Angew. Chem. 2015, 127, 2218–2221.
- 123A. Fihri, D. Cha, M. Bouhrara, N. Almana, V. Polshettiwar, ChemSuschem 2012, 5, 85–89.
- 124A. Fihri, M. Bouhrara, U. Patil, D. Cha, Y. Saih, V. Polshettiwar, ACS Catal. 2012, 2, 1425–1431.
- 125M. Y. Shahul Hamid, S. Triwahyono, A. A. Jalil, N. W. Che Jusoh, S. M. Izan, T. A. Tuan Abdullah, Inorg. Chem. 2018, 57, 5859–5869.
- 126Q. L. Liu, Z. Yang, M. S. Luo, Z. Zhao, J. Y. Wang, Z. A. Xie, L. Guo, Microporous Mesoporous Mater. 2019, 282, 133–145.
- 127C. Lei, Y. X. Cao, S. Hosseinpour, F. Gao, J. Y. Liu, J. Y. Fu, R. Staples, S. Ivanovski, C. Xu, Nano Res. 2021, 14, 770–777.
- 128X. Y. Chen, Q. Zhang, J. L. Li, M. Yang, N. N. Zhao, F. J. Xu, ACS Nano 2018, 12, 5646–5656.
- 129H. Song, Y. N. Yang, J. Tang, Z. Y. Gu, Y. Wang, M. Zhang, C. Z. Yu, Adv. Ther. 2019, 3, 1900154.
- 130X. X. Huang, Z. M. Tao, J. C. Praskavich, A. Goswami, J. F. Al-Sharab, T. Minko, V. Polshettiwar, T. Asefa, Langmuir 2014, 30, 10886–10898.
- 131E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc. 1951, 73, 373–380.
- 132Y. Wang, J. Tang, Y. N. Yang, H. Song, J. Y. Fu, Z. Y. Gu, C. Z. Yu, Angew. Chem. Int. Ed. 2020, 59, 2695–2699; Angew. Chem. 2020, 132, 2717–2721.