Oil–Water–Oil Triphase Synthesis of Ionic Covalent Organic Framework Nanosheets
Zheyuan Guo
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
These authors contributed equally to this work.
Search for more papers by this authorHaifei Jiang
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Hong Wu
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorLeilang Zhang
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorShuqing Song
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorYu Chen
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorChenyang Zheng
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYanxiong Ren
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 China
Search for more papers by this authorRui Zhao
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorYonghong Li
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorYan Yin
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Prof. Michael D. Guiver
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Prof. Zhongyi Jiang
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031 (China)
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 China
Search for more papers by this authorZheyuan Guo
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
These authors contributed equally to this work.
Search for more papers by this authorHaifei Jiang
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Hong Wu
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorLeilang Zhang
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorShuqing Song
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorYu Chen
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorChenyang Zheng
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYanxiong Ren
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 China
Search for more papers by this authorRui Zhao
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorYonghong Li
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorYan Yin
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Prof. Michael D. Guiver
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Prof. Zhongyi Jiang
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031 (China)
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 China
Search for more papers by this authorGraphical Abstract
An oil–water–oil triphase method based on a phase engineering strategy is developed for the bottom-up synthesis of ionic covalent organic framework nanosheets (iCOFNs). A favourable reaction region with moderate monomer concentration is achieved in the middle water phase. The resulting three cationic and anionic iCOFNs show potential for ultrathin biogas separation membranes.
Abstract
Ionic covalent organic framework nanosheets (iCOFNs) with long-range ordered and mono-dispersed ionic groups hold great potential in many advanced applications. Considering the inherent drawbacks of oil–water biphase method, herein, we explore an oil–water–oil triphase method based on phase engineering strategy for the bottom-up synthesis of iCOFNs. The middle water phase serves as a confined reaction region, and the two oil phases are reservoirs for storing and supplying monomers to the water phase. A large aqueous space and low monomer concentration lead to the anisotropic gradual growth of iCOFNs into few-layer thickness, large lateral size, and high crystallinity. Notably, the resulting three cationic and anionic iCOFNs exhibit ultra-high aspect ratios of up to 20,000. We further demonstrate their application potential by processing into ultrathin defect-free COF membranes for efficient biogas separation. Our triphase method may offer an alternative platform technology for the synthesis and innovative applications of iCOFNs.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202112271-sup-0001-misc_information.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. Liu, K. T. Tan, Y. Gong, Y. Chen, Z. Li, S. Xie, T. He, Z. Lu, H. Yang, D. Jiang, Chem. Soc. Rev. 2021, 50, 120–242;
- 1bK. Ge, T. He, R. Liu, S. Dalapati, K. T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D. Jiang, Chem. Rev. 2020, 120, 8814–8933.
- 2X. Li, P. Yadav, K. P. Loh, Chem. Soc. Rev. 2020, 49, 4835–4866.
- 3
- 3aJ.-K. Sun, M. Antonietti, J. Yuan, Chem. Soc. Rev. 2016, 45, 6627;
- 3bY. Yuan, F. Sun, L. Li, P. Cui, G. Zhu, Nat. Commun. 2014, 5, 4260;
- 3cH. Ma, B. Liu, B. Li, L. Zhang, Y.-G. Li, H.-Q. Tan, H.-Y. Zang, G. Zhu, J. Am. Chem. Soc. 2016, 138, 5897–5903;
- 3dS. Fischer, J. Schmidt, P. Strauch, A. Thomas, Angew. Chem. Int. Ed. 2013, 52, 12174–12178; Angew. Chem. 2013, 125, 12396–12400;
- 3eH. Chen, H. Tu, C. Hu, Y. Liu, D. Dong, Y. Sun, Y. Dai, S. Wang, H. Qiao, Z. Lin, L. Chen, J. Am. Chem. Soc. 2018, 140, 896–899.
- 4
- 4aL. Nie, K. Goh, Y. Wang, J. Lee, Y. Huang, H. E. Karahan, K. Zhou, M. D. Guiver, T.-H. Bae, Sci. Adv. 2020, 6, eaaz9184;
- 4bJ. Yu, J. Li, W. Zhang, H. Chang, Chem. Sci. 2015, 6, 6705–6716.
- 5
- 5aA. Mal, R. K. Mishra, V. K. Praveen, M. A. Khayum, R. Banerjee, A. Ajayaghosh, Angew. Chem. Int. Ed. 2018, 57, 8443–8447; Angew. Chem. 2018, 130, 8579–8583;
- 5bS. Mitra, S. Kandambeth, B. P. Biswal, M. A. Khayum, C. K. Choudhury, M. Mehta, G. Kaur, S. Banerjee, A. Prabhune, S. Verma, S. Roy, U. K. Kharul, R. Banerjee, J. Am. Chem. Soc. 2016, 138, 2823–2828;
- 5cH. Singh, M. Devi, N. Jena, M. M. Iqbal, Y. Nailwal, A. D. Sarkar, S. K. Pal, ACS Appl. Mater. Interfaces 2020, 12, 13248–13255;
- 5dH.-J. Da, C.-X. Yang, X.-P. Yan, Environ. Sci. Technol. 2019, 53, 5212–5220.
- 6
- 6aC. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Chem. Rev. 2017, 117, 6225–6331;
- 6bR. Dong, T. Zhang, X. Feng, Chem. Rev. 2018, 118, 6189–6235;
- 6cM. Matsumoto, L. Valentino, G. M. Stiehl, H. B. Balch, A. R. Corcos, F. Wang, D. C. Ralph, B. J. Marinas, W. R. Dichtel, Chem 2018, 4, 308–317;
- 6dK. Dey, M. Pal, K. C. Rout, H. S. Kunjattu, A. Das, R. Mukherjee, U. K. Kharul, R. Banerjee, J. Am. Chem. Soc. 2017, 139, 13083–13091;
- 6eJ. Liu, G. Han, D. Zhao, K. Lu, J. Gao, T.-S. Chung, Sci. Adv. 2020, 6, eabb1110;
- 6fY. Li, M. Zhang, X. Guo, R. Wen, X. Li, X. Li, S. Li, L. Ma, Nanoscale Horiz. 2018, 3, 205–212;
- 6gD. B. Shinde, G. Sheng, X. Li, M. Ostwal, A.-H. Emwas, K.-W. Huang, Z. Lai, J. Am. Chem. Soc. 2018, 140, 14342–14349;
- 6hH. Sahabudeen, H. Qi, B. A. Glatz, D. Tranca, R. Dong, Y. Hou, T. Zhang, C. Kuttner, T. Lehnert, G. Seifert, U. Kaiser, A. Fery, Z. Zheng, X. Feng, Nat. Commun. 2016, 7, 13461.
- 7W. Liu, X. Li, C. Wang, H. Pan, W. Liu, K. Wang, Q. Zeng, R. Wang, J. Jiang, J. Am. Chem. Soc. 2019, 141, 17431–17440.
- 8T. Ma, E. A. Kapustin, S. X. Yin, L. Liang, Z. Zhou, J. Niu, L.-H. Li, Y. Wang, J. Su, J. Li, X. Wang, W. D. Wang, W. Wang, J. Sun, O. M. Yaghi, Science 2018, 361, 48–52.
- 9L. Cao, H. Wu, Y. Cao, C. Fan, R. Zhao, X. He, P. Yang, B. Shi, X. You, Z. Jiang, Adv. Mater. 2020, 32, 2005565.
- 10Y. Yu, J. Lin, Y. Wang, Q. Zeng, S. Lei, Chem. Commun. 2016, 52, 6609–6612.
- 11B. J. Smith, A. C. Overholts, N. Hwang, W. R. Dichtel, Chem. Commun. 2016, 52, 3690–3693.
- 12Q. Wang, F. Yang, Y. Zhang, M. Chen, X. Zhang, S. Lei, R. Li, W. Hu, J. Am. Chem. Soc. 2018, 140, 5339–5342.
- 13W. Zhang, L. Zhang, H. Zhao, B. Li, H. Ma, J. Mater. Chem. A 2018, 6, 13331–13339.
- 14X. He, Y. Yang, H. Wu, G. He, Z. Xu, Y. Kong, L. Cao, B. Shi, Z. Zhang, C. Tongsh, K. Jiao, K. Zhu, Z. Jiang, Adv. Mater. 2020, 32, 2001284.
- 15Y. Jin, Y. Hu, M. Ortiz, S. Huang, Y. Ge, W. Zhang, Chem. Soc. Rev. 2020, 49, 4637–4666.
- 16Y. Kong, X. He, H. Wu, Y. Yang, L. Cao, R. Li, B. Shi, G. He, Y. Liu, Q. Peng, C. Fan, Z. Zhang, Z. Jiang, Angew. Chem. Int. Ed. 2021, 60, 17638–17646; Angew. Chem. 2021, 133, 17779–17787.
- 17Y. Peng, Z. Hu, Y. Gao, D. Yuan, Z. Kang, Y. Qian, N. Yan, D. Zhao, ChemSusChem 2015, 8, 3208–3212.
- 18P. Ying, D. Liu, J. Ma, M. Tong, W. Zhang, H. Huang, Q. Yang, C. Zhong, J. Mater. Chem. A 2016, 4, 13444–13449.
- 19P. Zhang, Z. Wang, P. Cheng, Y. Chen, Z. Zhang, Coord. Chem. Rev. 2021, 438, 213873.
- 20
- 20aH. Wang, M. Wang, X. Liang, J. Yuan, H. Yang, S. Wang, Y. Ren, H. Wu, F. Pan, Z. Jiang, Chem. Soc. Rev. 2021, 50, 5468–5516;
- 20bS. Kasahara, E. Kamio, T. Ishigami, H. Matsuyama, Chem. Commun. 2012, 48, 6903–6905;
- 20cQ. Xin, Z. Li, C. Li, S. Wang, Z. Jiang, H. Wu, Y. Zhang, J. Yang, X. Cao, J. Mater. Chem. A 2015, 3, 6629–6641.
- 21O. M. K. Readi, H. J. Mengers, W. Wiratha, M. Wessling, K. Nijmeijer, J. Membr. Sci. 2011, 384, 166–175.
- 22
- 22aS. Tsukahara, B. Nanzai, M. Igawa, J. Membr. Sci. 2013, 448, 300–307;
- 22bZ. Zhang, Y. Li, W. Zhang, J. Wang, M. R. Soltanian, A. G. Olabi, Renewable Sustainable Energy Rev. 2018, 98, 179–188.
- 23
- 23aS. Basu, A. L. Khan, A. Cano-Odena, C. Liu, I. F. J. Vankelecom, Chem. Soc. Rev. 2010, 39, 750–768;
- 23bC. Y. Chuah, K. Goh, Y. Yang, H. Gong, W. Li, H. E. Karahan, M. D. Guiver, R. Wang, T.-H. Bae, Chem. Rev. 2018, 118, 8655–8769;
- 23cZ. Guo, Z. Qu, H. Wu, R. Zhao, Y. Wu, Y. Liu, L. Yang, Y. Ren, C. Ye, Z. Jiang, ACS Sustainable Chem. Eng. 2020, 8, 6815–6825;
- 23dR. Zhao, H. Wu, L. Yang, Y. Ren, Y. Liu, Z. Qu, Y. Wu, L. Cao, Z. Chen, Z. Jiang, J. Membr. Sci. 2020, 600, 117841;
- 23eH. Jiang, J. Zhang, T. Huang, J. Xue, Y. Ren, Z. Guo, H. Wang, L. Yang, Y. Yin, Z. Jiang, M. D. Guiver, Ind. Eng. Chem. Res. 2020, 59, 5296–5306.
- 24
- 24aH. Fan, A. Mundstock, J. Gu, H. Meng, J. Caro, J. Mater. Chem. A 2018, 6, 16849–16853;
- 24bL. Yang, H. Yang, H. Wu, L. Zhang, H. Ma, Y. Liu, Y. Wu, Y. Ren, X. Wu, Z. Jiang, J. Mater. Chem. A 2021, 9, 12636–12643.
- 25J. D. Wind, S. M. Sirard, D. R. Paul, P. F. Green, K. P. Johnston, W. J. Koros, Macromolecules 2003, 36, 6433–6441.
- 26
- 26aL. Yang, X. Liu, H. Wu, S. Wang, X. Liang, L. Ma, Y. Ren, Y. Wu, Y. Liu, M. Sun, Z. Jiang, J. Membr. Sci. 2020, 596, 117733;
- 26bJ. Shen, G. Liu, Y. Li, Q. Liu, L. Cheng, K. Guan, M. Zhang, G. Liu, J. Xiong, J. Yang, W. Jin, Adv. Funct. Mater. 2018, 28, 1801511.
- 27Y. Ban, Z. Li, Y. Li, Y. Peng, H. Jin, W. Jiao, A. Guo, P. Wang, Q. Yang, C. Zhong, W. Yang, Angew. Chem. Int. Ed. 2015, 54, 15483–15487; Angew. Chem. 2015, 127, 15703–15707.